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Abstract

We discuss how priming of attention shifts has in recent studies proved to be a useful method for studying
internal representations of visual ensembles. Attentional priming is very powerful in particular when role
reversals between targets and distractors occur. Such role reversals can be used to assess how expected or
unexpected a particular target is. This new method for studying representations of visual ensembles has
revealed that observer’s representations are far more detailed than previous studies of ensemble perception
have suggested where the emphasis has been on summary statistics, i.e., mean and variance. Observers can
represent surprisingly complex distribution shapes such as whether a representation is bimodal or not. We
discuss the details of how this feature distribution learning (FDL) method has been used to assess internal
representations of visual ensembles. We also speculate that the method can prove to be an important
implicit way of assessing how observers represent regularities in their environments.

Keywords Perceptual representations, Visual ensembles, Visual search, Priming, Feature distribution
learning (FDL)

1 Intro and Background

Priming of attention shifts has been extensively investigated over
the last 25 years, mainly with various forms of visual search tasks. A
key finding in this literature comes from the studies of Maljkovic
and Nakayama [1]. They used a paradigm introduced by Bravo and
Nakayama [2] where observers searched for an oddly colored dia-
mond among distractors of another color and had to judge whether
there was a notch on its left or right side. Bravo and Nakayama had
observed that when targets maintained their color between trials
(e.g., the target was always the red diamond among green distractor
diamonds), search was overall faster than when the target and
distractor identity reversed unpredictably (from a red target dia-
mond among green diamond distractors to a green target diamond
among red distractor diamonds). There was therefore a benefit to
target and distractor consistency from one trial to the next.
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Maljkovic and Nakayama [1] replicated this result, finding addi-
tionally that search became faster the more often the same target
color repeated. The consistency benefit therefore reflected this
“priming” effect, and importantly they found that the priming
effects were only minimally affected by top-down strategies (such
as whether observers knew the upcoming target color or not; but
see [3, 4]). Maljkovic and Nakayama also tested the cumulative
effects of priming over several trials, finding that response times
decreased by 20 to 25%, with no corresponding increases in error
rates (see, e.g., [5]).

This basic finding on priming during feature search has been
replicated many times (see [6], for review). Here, our aim is firstly
to discuss basic considerations for priming paradigms and secondly
to introduce a paradigm that utilizes priming to assess how human
observers represent the environment.

1.1 What Can Prime? It is important to note that not only target characteristics can prime
from one attentional allocation to the next but also the identity of
the distractors [1, 7–9]. If the same distractors appear from one
trial to the next, search will be speeded, irrespective of whether the
target identity is unchanged [1, 7]. These distractor priming effects
therefore make their independent contribution to performance
[8, 10, 11] and can be just as strong as the target priming effects,
although the two can interact. In a paradigm where the target and
distractors do not vary independently, it is impossible to disentan-
gle the two, and this needs to be taken into account when results
from priming studies are interpreted. These two separate sources of
priming effects can combine so that when an odd-one-out target
contains the colors of the distractor on the preceding trials, search is
slowed even more, reflecting so-called role-reversal effects. Impor-
tantly, the strength of these role-reversal effects can be used to
answer other questions regarding visual perception, as we discuss
below.

The priming effects have typically been thought to reflect
facilitation of individual features [12]. Other findings show that
such priming can occur from the repetition of more complex
characteristics, such as feature combinations or objects identities
[13–16]. Separate features of the stimuli that observers search for
can cause their own priming effect, and so can whole targets,
depending on the circumstances [15]. For example, color, spatial
frequency, and orientation can cause independent priming effects
depending on task relevance [17].

A critical feature of these priming effects is that they are so
strong that they sometimes seem to be able to account for effects
that have typically been attributed to explicit top-down attentional
guidance in the literature [14, 18, 19]. As an example, Kristjánsson,
Wang, and Nakayama showed that search times were similar when
target identity was always the same and when priming effects were
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maximal, although target identity was not known from one trial to
the next, showing that large portions of effects attributed to
top-down guidance were accounted for by priming. Belopolsky
et al. [18] showed that so-called contingent-capture effects [20],
thought to be caused by top-down guidance, could, to a large
extent, be explained by priming. Theeuwes and van der Burg [19]
assessed interference effects from irrelevant distractor stimuli,
finding that observers could not use top-down set (from verbal or
symbolic cues) to ignore irrelevant color singletons (the interfer-
ence was still present), but they further argued that when atten-
tional priming effects were maximal, interference from irrelevant
distractors was minimal.

A common interpretation of attentional priming effects is that
searching for a target automatically creates a representation of that
item or feature depending on context [15] which, in turn, influ-
ences subsequent attention allocation. This entails the assumption
that the processing of the features that are contained in the tem-
plate is facilitated. Such templates are often thought to be kept in
visual working memory—and there is indeed evidence suggesting
that visual working memory content can modulate priming
[21, 22]. Other accounts of priming involve the dimensional
weighting account [23, 24] and the relational encoding account
[25] that can both surely account for priming under certain condi-
tions. Note, however, that in their review, Kristjánsson and Cam-
pana [26] concluded that priming was so ubiquitous in attentional
orienting and occurred on so many levels that no single account
would probably ever explain it completely.

1.2 Key

Considerations for

Studies of Attentional

Priming

1.2.1 The Duration of

Priming Effects

Attentional priming effects are long-lasting. Maljkovic and
Nakayama ([1], Exp. 5) showed that up to at least five trials in the
past can cause priming, irrespective of what the target and distractor
identities were on the intervening trials. Regrettably, researchers
often look only at switches versus repeats in studies of priming
rather than cumulative effects over several trials. This is unfortunate
for two main reasons: firstly, interesting patterns of cumulative
repetition are overlooked, and secondly as the effects are additive
over adjacent trials with the same target and distractors, looking
only at switches or repeats of target identity may not assess priming
effects at their maximum strength.

Priming may have both a transient component and a longer-
lasting one [27, 28]. Kruijne et al. [29] concluded however that
priming involves a single facilitative memory trace that decays over
approximately eight trials (see also [30]).

Maljkovic and Nakayama ([1]; see also [31]) introduced a
clever way of assessing how long the priming influence from a single
trial lasts independently of what occurs on intervening trials that
they called memory kernel analysis. The method involves categoriz-
ing a given trial as the same or different as the one that appeared on
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the trial that preceded it, two trials preceding it, three trials preced-
ing it, and so on (or formally, i trials preceding the given trial n).
For each trial n, target color on trial n�i can be the same or
different as the target color on trial n. But over a large number of
trials, the numbers of the same and different color trials between
trial n and trial n �i will even out. So, to assess the influence of the
color of the target i trials in the past, performance on trials where
target color (or any other property that is presumed to be primed)
on trial n�i was the same as on trial n and when it was different can
be compared. Note that the same procedure can be carried out for
future trials. Future trials should, of course, cause no priming effect
and therefore provide a useful sanity check for the analysis and can
also be used as an index of the variability in the data (see [1, 31]).

These memory kernels can then be modeled (see [27, 32]).
Martini [27] found, for example, that priming effects from
repeated target color and repeated position are well described by
the summation of two exponential functions, one with a high gain
and fast decay and another with low gain but slower decay (consis-
tent with [28]). Kruijne et al. [29] later concluded that a single
temporal function could explain priming of features.

Overall these memory kernels that describe the time course of
priming effects highlight an important point, since they show that
the priming effects can be subtle and long-lasting and, more impor-
tantly, how they can contaminate results in various paradigms. To
take one example, unequal numbers of two different targets within
blocks can cause a contaminating influence that can bias experi-
mental results.

1.2.2 Disentangling

Stimulus Priming and

Response Priming

Another key consideration is that what is primed must be disen-
tangled from what is reported to avoid the contaminating influence
of response repetition effects. To take one example, Maljkovic and
Nakayama [1] ensured that their response variable in their task was
independent of any feature-repetition effects to avoid this. That is,
while observers looked for an odd-one-out color, they responded
to a location of a notch on the oddly colored item. Also, in a present
versus absent visual search task tested in Kristjánsson et al. [14], the
present-absent judgment was independent of the orientation of
targets and distractors that either repeated or not between trials.

1.2.3 Effects of

Distractor Repetition

It became clear early on that distractor priming was just as impor-
tant as target priming [1] and that they have their own influence
that can be disentangled in experimental design [10]. It is therefore
important not to attribute priming effects to either targets or
distractors, unless the effects of each can be convincingly uncon-
founded by design.
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1.2.4 Unwanted

Influences of Priming

As mentioned before, the influences of priming can be subtle. To
take one example, cues are thought to summon attention, whether
by cueing a location or a stimulus feature: a red stimulus may be
used to alert observers to an upcoming red stimulus inducing a
presumably top-down attention effect. But any benefit from the cue
may be confounded with priming since the color cues can prime
attention shifts [18]. For this reason, we recommend that priming
effects should be assessed even if they are not of the main interest
unless they are comprehensively ruled out by careful experimental
design. Note that this actually touches upon the thorny issue of
top-down effects versus priming effects [14, 33–35]. One way to
avoid this in cueing studies is to use more symbolic cues (e.g., word
cues), to isolate effects of top-down attention.

1.3 Using Role

Reversals to Assess

Probabilistic

Representations of

Features in the

Environment

Priming effects in visual search reflect information about target and
distractors that observers have accumulated over previous trials.
Recently, Chetverikov, Campana, and Kristjansson [36] suggested
that this allows using priming to assess how observers represent
probability distributions of visual features.

The idea that the brain encodes the statistics of the environ-
ment and uses them to make inferences is well-established
[37–42]. However, a given physical probability distribution of
features can be represented by the visual system in different ways.
While observers need to know the exact shape of distributions to
make optimal inferences, approximate inferences can be made with
various simplifications. For example, knowing the feature range of a
class of objects is enough to say whether or not a new object
belongs to this class. But many computational models of vision
operate on the premise that a given distribution of physical features
will be represented with its shape intact. For example, the core
assumption of many ideal observers models is that observers accu-
rately represent the generative model of the environment [43]. It is
necessary to distinguish these possibilities to understand what kind
of information the brain has access to and what it can use.

Revealing the contents of a representation of a physical proba-
bility distribution in the brain is not a trivial problem. It is possible
to use traditional psychophysics to assess the representation of a
single feature value (e.g., one can ask observers to adjust the
orientation of the bar so that it matches a previously shown
Gabor patch). It is also possible to ask observers to assess the
average value of several stimuli, as has been done in “summary
statistics” studies (see review in [44]). However, it is impossible
to directly inquire about more complex properties, such as skew-
ness, kurtosis, or even variance. As succinctly put by Kuriki for the
case of color distributions, “there is essentially no direct approach
to studying the color appearance of a multi-colored patch itself”
[45, p. 249]. But by utilizing priming effects, we have found a way
of circumventing this problem.
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Priming effects in visual search occur because observers accu-
mulate information about targets and distractors in order to solve
the task more efficiently. In traditional visual search with known
targets and distractors, an ideal observer will make inferences based
on the ratio of probabilities that a given measurement originates
from a target against that it originates from the distractors
[46, 47]. In pop-out search, where observers do not know the
targets and distractors beforehand (they simply have to find the
odd-one-out), observers have to engage in a costly estimate. First,
they have to compute for each stimulus, what would be the poten-
tial distractor probability distribution based on the other stimuli,
and only then estimate whether or not this stimulus could be a
target. Learning features of targets and distractors allow observers
to avoid this and to analyze each stimulus separately. That is, an
observer can look at a given stimulus and decide whether it is a
target or a distractor without the need to analyze other stimuli.
This shortcut comes at a cost: if observers have accumulated some
knowledge of stimuli distributions, then search efficiency becomes
dependent on how well these distributions describe current stimuli.
In particular, when the target changes and becomes similar to
distractors from previous trials, search efficiency should decrease.

Crucially, decreases in search efficiency when targets become
similar to preceding distractors should depend on the degree of
similarity between them. For an ideal observer, all other things
being equal, search efficiency should be inversely proportional to
the probability that a given stimulus belongs to a learned distractor
distribution, RT / 1

p xjDð Þ, where x is the internal measurement of a
stimulus’ feature, D are the parameters of the distractor distribu-
tion, and RT is response time. Introducing targets with different
degrees of similarity to the learned distractors would then enable
“probing” the representation at different points. Response times in
visual search should then distinguish between different representa-
tions of distractor distributions, essentially providing a continuous
estimate of an internal probability density function describing the
physical distribution of distractors (Fig. 1).

This idea was tested by Chetverikov et al. [36]. They found that
the curve describing response times as a function of target orienta-
tion (centered on the mean of previous distractors) did indeed
follow the shape of a previously presented distractor probability
distribution when observers searched for an odd-one-out line tar-
get among differently oriented lines. This was observed both for
distributions with the same range or standard deviation but differ-
ent shapes (e.g., uniform vs. Gaussian) and for differently skewed
but otherwise identical distributions. Chetverikov and colleagues
later described two important limitations of this learning process.
First, more complex distributions, such as bimodal ones, require
more trials to be learned, while simpler ones, such as Gaussian ones,
are already represented relatively accurately after one or two trials
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[48]. Second, in order to learn properties of a distribution, obser-
vers need to see a certain minimum number of individual stimuli on
each trial [49]. Even mean and variance do not seem to be encoded
when only eight lines are presented. Note that this is in sharp
contrast to findings on explicit estimates of averages, where obser-
vers are able to judge the mean with similar precision regardless of
the number of stimuli presented, as long as the overall range stays
the same [50]. Finally, this implicit feature distribution learning is
not limited to orientation, as similar effects were observed for
colored isoluminant diamonds with different hues [51].

2 “Hands-on” Step-by-Step Walk-Through of an Application of the Feature
Distribution Learning (FDL) Methodology

The methodological paradigm to assess observers’ feature distribu-
tion representations has now been used in several different studies
[36, 48, 49, 51–53]. Each of these studies probed different aspects
of feature distribution learning. While the particular methodologi-
cal details differ somewhat, they nevertheless all share the same core
principle. This involves presenting subjects with a series of odd-
one-out visual search trials, where the feature values of the distrac-
tors are drawn from a certain type of distribution whose shape and
summary statistics stay the same throughout the learning trials.
Observers are then presented with a test trial, in which the feature
values of the target and the distractor distributions are swapped.
This role reversal increases observer’s visual search times (as seen

Fig. 1 Hypothetical responses to targets as a function of their similarity to a previously learned distractor
distribution. After several visual search trials (here, in the orientation domain), observers obtain knowledge of
distractors corresponding to the physical probability distribution of their features (bottom left). It is then
possible to “probe” this knowledge by presenting different search targets (bottom central). The response
times would be proportional to the degree of similarity between test target and the expected distractors (blue
bars). By presenting many different targets, it is then possible to obtain a continuous estimate of a probability
density function, corresponding to a representation of distractors (red line)
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previously in a number of studies; [7, 8, 10], and as we have
discussed in the section above). When the visual search times
obtained from the test trials are plotted as a function of the degree
of role reversal, it reveals observer’s internal representations of the
distractor distribution that was used during the learning trials.

This tutorial will provide detailed information about the three
main parts involved in the FDL methodology, which are the design
of the visual search task, the structure of the learning trials, and the
structure of the test trials. So far, the most studied features with this
method are orientation and color. While this tutorial will focus on
orientation, the same principles can easily be applied to color
(or any other feature space). However, if there are any feature-
specific requirements for using color as the main feature, then
these are also noted. The next section will focus on the details of
the visual search display, while the following ones will focus on how
the feature values of the target and distractors are determined.

2.1 Visual Search

Task

The main task is an odd-one-out visual search where observers try
to find the item whose feature value differs from the rest of the
items in the display. When this feature is orientation, the search
array includes 36 white lines displayed in a six by six grid on a gray
background (Fig. 2b). This method has been tested with smaller set
sizes (e.g., 8, 14, 24 lines), but distribution shape learning has only
been observed with a larger set size (36 lines, [74]; see discussion
above).

Fig. 2 (a) An example visual search display for assessment of the learning of color distributions. Participants
search for the oddly colored diamond and report the location of the cutoff on that diamond. (b) An example
visual search display for testing learning of orientation distributions. Participants search for the oddly oriented
line and report whether that line is in the upper or lower half of the display
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The size of each line in the search array is set to approximately
1�. The search array subtends approximately 15� � 15� and is
positioned at the center of the screen. A random jitter (in the
range of �0.5�) is added to both the vertical and horizontal coor-
dinates of each line. This is done to decrease the precision of the
orientation estimate from each individual line, which presumably
decreases the viability of serial processing. The position of the target
(i.e., the oddly oriented bar) in the search array is randomized.

Participants indicate the location of the target by pressing the
“up” button if the target is found in the upper three rows (upper
half) and the “down” button if the target is found in the bottom
three rows (bottom half) of the search array. The rationale for this
choice of response is that the observers respond to the location but
not the feature of the target. In other studies, observers responded
to a quadrant in which a target was presented [52] or to a shape of a
target in a study on colors (see an example below, and further
details in [51]). If the participant responds incorrectly, then a
feedback display is presented for 1 s, which includes the word
“ERROR” in red at the center of the screen. If the response is
correct, the search array for the next trial appears immediately. The
rationale for not providing feedback after correct responses is to
avoid interrupting the between-trial continuity with a feedback
display. Feedback screens for incorrect responses slow down the
experiment, which, in turn, functions as a motivation for the par-
ticipant to respond correctly.

However, the main motivating factor for the participant is the
score calculated based on accuracy and reaction time. Participants
are encouraged to respond as fast as possible to increase their
scores. For each trial the score is calculated as follows (where RT
is the response time in seconds):

For correct answers : Score ¼ 10þ 1� RTð Þ � 10

For incorrect answers : Score ¼ � 10þ 1� RTð Þ � 10j j � 10

On each trial, the score from the previous trial can be shown in
one of the corners of the screen. Positive scores are displayed in
green and negative in red. When a break is reached during the
experiment, the participants’ current total score is shown, along
with information about what percentage of the experiment has
been completed. The only function of keeping score in this experi-
ment is to motivate participants. The particular choice of the score
formula is arbitrary, but as is evident from the equation, it is positive
for accurate responses faster than 1 s.

When participants perform this odd-one-out visual search task
for the first time, their reaction times generally turn out to be too
long (>2 s). Therefore, training sessions are needed for naı̈ve
participants to get used to the task. The duration of the training
might vary, but typically a hundred training trials or more are
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necessary. The goal of the training is to reduce the average response
times and increase accuracy (on a version of the paradigm, such as
the one used by [36], for the well-trained observers, the average RT
are below 1 s, and accuracy is above 85% correct). The rationale for
excluding observers with average response times above a certain
threshold is to exclude those who engage in serial processing of the
display. As discussed above, that might diminish the learning.

The same principles indicated above can also be applied when
color is used as the main feature in visual search. An example display
for color search can be seen in Fig. 2a. Instead of lines, participants
see 36 diamonds each with a different hue. Each diamond contains
a cutoff in any of their four corners. As explained previously, it is
important to prevent response repetition from interfering with
perceptual priming [1]. Therefore, participants are asked to find
the diamond with a hue unlike all the other and report the location
of the cutoff (i.e., up, down, left, right).

2.2 Learning Trials Feature distribution learning experiments consist of blocks. Each
block includes streaks of learning trials that are each followed by
one or two test trials. Since we are interested in observers’ ability to
learn the shape of a distribution of feature values, the key aspect of
the learning trials is that the shape of the distribution, from where
the distractor orientation is drawn, is constant throughout the
learning streak.

The length of the learning streaks can be from 1–2 trials up to
10–11 trials depending on the complexity of the distribution used
for distractor orientations. For simpler distributions (e.g., Gaussian,
uniform), it has been shown that even one to two trials can suffice to
uncover learning of distribution shapes. However, whenmore com-
plex distributions are tested (e.g., bimodal), longer learning streak
(7–10 trials) seems to be needed [48]. Even though with simpler
distributions one or two trials might be enough to see the learning
effects, we recommend keeping the learning streak length to at least
three to four trials in order to reduce carry-over effects from pre-
ceding streaks. Generally, the length of a learning streak randomly
varies during an experiment within a very brief range (e.g., from five
to seven trials) in order to break the regularity of the learning and
test trials so that participants do not build any expectations about
when a block starts and ends. From extensive querying of observers
performing this task, they never report having any knowledge of the
nature of the sequential trial structure.

The mean of the distractor distribution is randomly determined
between �90� and +90� for each learning streak and kept constant
within that streak (since this is the distribution that observers are
supposed to learn). The target orientation is randomly determined
for each trial within a learning streak but is always at least 60� away
from the mean of the distractor distribution. This is to ensure that
the target is sufficiently dissimilar from distractors, keeping the task
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relatively easy for observers [54]. In cases where the distractor
distribution has high variance and/or has long tails (e.g., Gauss-
ian), some of the distractor lines could turn out to have a similar
orientation to the target line. This, in turn, would make the visual
search task impossible to carry out. To avoid this, the range of the
distractor distribution can be restricted. For example, a Gaussian
distractor distribution can be truncated such that any outlier orien-
tation outside of the two-standard deviation range can be removed
and then resampled accordingly. The same principles mentioned
above for orientation can be applied to color space as well.

2.3 Test Trials On test trials, the feature values that have been assigned to the
target and the distractors during the learning trials are switched in
order to reveal observer’s internal expectation of distractor orienta-
tions (or colors). This, in turn, exposes observer’s internal repre-
sentation of the distractor distribution used in the learning trials.
While this is achieved with one test trial, the number of test trials
can randomly vary between one and two during an experiment, in
order to prevent observers from building expectations about when
a block begins and ends. However, only the first test trial is usually
included in the data analysis as the effects of the learning streak are
expected to dissipate quickly.

The most important consideration for test trials is the selection
of the target orientation. The main variable that determines the
extent of role-reversal effects is the distance between the target
orientation on the test trial and the mean orientation of the previ-
ous distractors that are used on the learning trials. This variable,
which we refer to as CT-PD (“current target-previous distractor”
distance), is essentially the main factor that is manipulated in FDL
studies. Plotting reaction times from the test trials as a function of
CT-PD reveals observers’ internal representation of the previous
distractor distribution (Fig. 3). In order to reveal this representa-
tion in the range of all possible orientation values, CT-PD values
have to uniformly cover this whole range. In order to do that, the
orientation space is divided into bins (e.g., 12 bins from �90� to
+90� such that each bin covers a range of 15�). Then, a CT-PD
value is randomly chosen for each test trial in such way that at the
end of the experiment, the number of CT-PD values chosen from
each bin would be equal. Once the CT-PD value is determined for a
test trial, the target orientation is selected in a way so that the
distance between the current target and the previous distractor
mean is equal to this CT-PD value (Fig. 3).

Once the target orientation is determined, the mean of the
distractor distribution is chosen randomly given that the distance
between the target orientation and the mean orientation of the
distractor distribution is at least 60�. The distractor distribution
on the test trial has to be chosen such that the difficulty of the
search on the test trial should be intermediate. If the search is too
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easy or too difficult, floor and ceiling effects might override the
role-reversal effects. Previous studies have shown that using a
Gaussian distribution with a standard deviation of 10� for the
distractor distribution on the test trial provides good testing con-
ditions, but note that this can differ strongly by the aim and
characteristics of individual experiments. This Gaussian distribution
is also truncated so that no orientation appears as a distractor
outside of the two standard deviation ranges.

The number of learning and test streaks used in the experiment is
another important factor in this methodology. When the goal is to
test whether observers learn the shape of a feature distribution, the
experiment should include enough test trials (hence, enough CT-PD
values) to fully reveal observers’ inner representation of that distribu-
tion. We suggest having at least ~350 CT-PD values per observer
distributed evenly over the possible feature values. The same princi-
ples described here for orientation also apply to color feature space by
using just-noticeable differences (JND) as the basic unit (see details
on using JND to create a color space for search in [51]).

3 Data Analysis

The goal of the FDL as a method is to infer the characteristics of the
ensemble representations based on the search efficiency on test
trials. One of the important questions is to analyze whether the
visual system represents features as probability distributions rather

Fig. 3 An example of how CT-PD curves are generated. CT-PD refers to the distance between current target
(CT) and previous distractor (PD) distribution mean. After a few trials with distractors drawn randomly from a
given learning distribution (a), observers are presented with a test trial (b). CT-PD distances on test trials are
manipulated, and then reaction times obtained from test trials are plotted as a function of these CT-PD
distances (c, upper). CT-PD curves reveal the observers’ internal model of the distractor distribution used on
the learning trials and are compared to the physical distribution of stimuli during learning trials (c, lower). The
CT-PD curves in this figure are based on the results of Experiment 3C from Chetverikov et al. [36] and are
replotted from the data available at https://osf.io/3wcth/
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than only representing the mean and variance (as normally
described in summary statistics account of ensemble perception).

In order to reveal observer’s internal representation, search
times of the first test trial are analyzed. As previously mentioned,
the main manipulation factor is the distance between the target on
the test trial and the previous distractor distribution mean. Search
times of the first test trial are plotted against the distance between
the current target and the previous distractor mean (CT-PD) as
shown in Fig. 3c. For symmetrical distractor distributions, plotting
the absolute distance is sufficient. Figure 3c plots the RT–CT-PD
functions using a local regression fit (upper graph) and the proba-
bility density function of the distractor distribution (lower graph).

Since search times are analyzed, statistical analyses should be
done on log-transformed data due to the skewed search time dis-
tributions of the raw data [55–57] and maybe remove outliers due
to very slow responses. In addition, only the correct trials are
analyzed. One should also make sure that there are enough correct
trials for each observer so that the analyses satisfy the usual criterion
of more than 85% correct responses.

If role reversals affect search times, then search times of targets
within the previous distractor distribution should be slower than
search times for targets outside the previous distractor distribution.
And, if the actual probabilities of distractors and therefore the
distractor distribution shape are represented, the RT function
should resemble the shape of the previous distractor distribution.

How canwe judge howwell the observed RTcurve corresponds
to the distribution shape? There are several ways for quantitative
analysis of RT patterns, including segmented regression andmodel-
fitting. For simple distributions, such as Gaussian or uniform, a
useful tool for evaluating these RT functions is to use segmented
regression [58, 59]. Following a Gaussian distractor distribution, a
monotonically decreasing RT curve is expected, but following, for
example, a uniform distractor distribution an RT curve that consists
of a flat segment within the distribution range and a steep decrease
and faster RT’s outside the distribution range is expected, since the
probabilities of all feature values within the distribution range are
equal (see Fig. 3c). A segmented regression analysis involves search-
ing for significant changes in RTat some particular CT-PDdistance.
Previous data has shown [36, 48, 49, 51, 53] that the representation
of a uniform distribution results in significant breakpoints around
the “edge” of the uniform distribution. Search times suddenly
change and become faster as the edge of the distribution is reached.
The slopes of the individual regression segments are used to support
this pattern. Following a uniform distractor distribution, a slope
around zero before the breakpoint and a negative slope after the
breakpoint resemble the two parts of a uniform distribution. Fol-
lowing a Gaussian distribution, a negative slope of the single seg-
ment resembles the monotonic decrease in search time as the
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distance between the target and the previous distractor mean
increases. Statistical tests like the Davies’ test [60] compare a
two-line model with a single line model that has no breakpoint
and provides information about whether the two slopes of the
different segments are significantly different. Further analyses
could be done on individual subjects’ data by comparing the average
regression slopes before and after the breakpoint determined on a
group basis or based on a priori assumptions (such as the range of
the distribution).

A second method of analyzing CT-PD curves is to compare the
observed data with pre-defined models that correspond to different
distribution shapes. Data can be tested against these pre-defined
models of different distribution shapes, and the quality of the
different fits can be assessed with the Bayesian Information Crite-
rion. Model fits can be done across subjects or for each subject
individually. The model fits seem to be in agreement with seg-
mented regression data in previous studies [51], and they provide
a more principled way of testing the hypotheses about encoding of
distribution shape. On the other hand, they might lack sensitivity
given that the perceptual space might be different from the physical
feature space.

We have previously used the following set of models to distin-
guish between Gaussian and uniform distractor distributions:

1. Half-Gaussian model with a SD ¼ σ:

RT ¼ c0 þ 2a � e�
CTPD2

2�σ2 ,

where a defines the height of the peak, c0 corresponds to the RT
outside the distribution range, and σ corresponds to the standard
deviation of the feature distribution that has been used in
the experiment (note that the model is half-Gaussian because the
Gaussian distribution is symmetric and can be analyzed using the
absolute orientation values).

2. Uniform model with a range of 2 � σ:

RT ¼ c0, CTPD � 2� σ
c1, CTPD > 2� σ

�

where c0, c1 determine the RT inside and outside the distribution
range, respectively.

3. “Uniform with decrease” model:

RT ¼ c0, CTPD � 2� σ
c0 þ b � CTPD, CTPD > 2� σ

�

where c0 determines the RT within the distribution range and b is
the decrease outside the distribution range.
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4. Linear model:

RT ¼ c0 þ b � CTPD:

Each model includes a Gaussian-distributed error term. Differ-
ent models can be fitted to the data and the best-fitting parameters
are obtained using Maximum Likelihood Estimation.

Previous results have shown that search times following a uniform
distractor distribution are best fit by a “uniform with decrease” model
and following a Gaussian distractor distribution were best fit with
either a half-Gaussian or a linear model [51]. Figure 4 shows two of
the best-fitting models and the observer data for two different distri-
bution shapes. Together, the segmented regression and the model
fitting can provide clear evidence of feature distribution learning.

Note that the goals of data analysis depend on the aims of the
study. While here we concentrated on testing distribution shape
learning, that is by no means the only possibility. For example,
Chetverikov et al. [52] tested whether observers can encode two
of the modes of a mixture distribution simultaneously following a
single learning block. It is also possible to test, for example, how
observers encode the mean or variance of a distribution by analyz-
ing locations of the peaks on a CT-PD curve and its width. Differ-
ent analytic approaches might be suitable for different research
questions.

4 Potential Benefits of FDL

Chetverikov et al. [49] measured whether evidence of FDL leads to
higher search efficiency. In that sense it might have a similar effect as
contextual cueing. They found some evidence of this, indicating

Fig. 4 Observed data and modeling fits for maximum likelihood estimation. Observed data (green) and the best
fits of half-Gaussian (blue) and “uniform with decrease” (red) models are based on the results from
Chetverikov et al. [51] and are replotted from the data available at https://osf.io/t2856/
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that participants could use the learned distributions, guiding atten-
tion across the visual scene. We should also note some preliminary
evidence that shows that the distribution learning can be specific to
certain portions of the visual scene [61]. But in some sense, the
proof is in the pudding, since this paradigm shows how search is
affected by the role reversals and that this effect follows the shape of
the curves. In other words, the distribution learning improves the
efficiency of the search both in terms of speed and accuracy. The
paradigm therefore reveals ways in which our visual system makes
use of regularities in the visual environment to aid navigation and
object recognition.

A notable aspect of feature distribution learning is that it does
not require observers to report the feature of interest in any way.
This stands in direct contrast to summary statistics studies that
require observers to explicitly report or compare some property
of the distribution [62–67] which makes FDL more similar to
methods relying on other versions of priming or adaptation
[68–70]. Importantly, the absence of explicit judgment removes a
potential bottleneck in processing of the feature distributions.
When making explicit judgments, observers first have to transform
the information about the feature likelihood into a single value, i.e.,
make a “readout” from the information about feature probabilities
(akin to how an explicit confidence judgment might involve a
readout from probabilistic information on uncertainty [71]). It is
also possible that observers do not have explicit access to informa-
tion about feature probabilities at all and rely on some heuristics
when asked to estimate summary statistics [72, 73]. Furthermore,
in contrast to other similar methods, FDL allows for the mapping
of the feature distribution representations at different points of
feature space. In essence, FDL can be considered a behavioral
alternative to currently available neurophysiological decoding
methods, enabling understanding of the way information is repre-
sented in the brain.

5 Summary

Priming effects from repeated target and distractor features are very
strong. Their influences last for a long time and they are very hard
to willingly overcome [1]. When target repetition effects and dis-
tractor repetition effects are combined, role-reversal effects occur
that are very large in the context of visual psychophysics and
research on visual attention. This makes these effects highly useful
since their statistical power enables various applications, including
the assessment of more subtle effects, such as how distractor dis-
tributions are encoded, just as we described above. But we also
emphasize that the priming effects can contaminate experimental
results if their influence is not taken into account.
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Here we have also shown how priming effects (in particular role
reversals) have been used to assess our representations of features in
the environment through the implicit assessment of feature distri-
bution learning (FDL). The key insights that our methods have
provided involve that our representations are more sophisticated
and include far more detail than had previously been assumed in the
literature. We believe that this methodology will be of use in asses-
sing many aspects of the function of visual attention, visual working
memory, and statistical representations of the environment.

The exactmechanisms of feature distribution learning remain to
be studied. However, some characteristics of this process are already
known (see also [74]). First, as already noted above, there are lower
limits on both the number of trials and the number of stimuli
necessary for the effect to appear. This suggests that the information
about distractors is not accumulated purely locally (otherwise a
lower number of stimuli could be compensated for by higher num-
ber of trials, which was not the case) and also that this effect involves
the accumulation of information over time rather than being a
passive aftereffect of stimulus presentation (in the latter case, the
bimodal distribution should be represented as unimodal when sti-
muli from different modes are presented at the same location over
several trials). Second, observers can gather information about sev-
eral different subsets of stimuli on a single trial [52]. This again
highlighted the point that information about features is gathered in
parallel across the visual field. Third, the generalization from orien-
tation to color suggests that themechanisms of FDL are dimension-
independent. However, whether observers can gather information
about the distributions of more complex features (e.g., motion
direction) or noncircular ones (e.g., lightness) remains to be stud-
ied. There are also a lot of unknowns. The question whether infor-
mation about feature distribution shape is represented in the cortex
or simply readout from a population of differently tuned neurons
cannot be answered without neurophysiological studies. A related
question is how do observers update the information about the
distribution from trial to trial? Do they update the weights of
different feature values, or do they update the parameters of the
distributions? Also, it is not yet known whether and how the infor-
mation about different features can be combined. It seems natural
to assume that it should be possible, and this combined information
can potentially allow for probabilistic object representations. For
example, an apple could be a combination of representations of
probability distributions for colors and shapes. There is certainly a
lot of space for exploring the mechanisms of this unique phenome-
non. The method has the additional asset of being an implicit
measure of representations of the stimuli in our environment. Sta-
tistical representations (such as in the summary statistics literature)
are typically assessed with explicit methods, and recently we have
provided preliminary evidence that implicit methods may uncover
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representations of moments of statistical distributions of stimulus
ensembles that are masked by explicit methods [75].

Finally, we would like to emphasize that this method demon-
strates that observers can learn feature probability distributions in
the environment as opposed to a more traditional emphasis on
discrete feature values originating in the feature-integration theory
of attention [76]. Furthermore, the method shows that such prob-
ability distributions are used to guide observer’s attention toward
(or away from) targets, hindering or facilitating visual search.
Recent studies also demonstrate the probabilistic nature of atten-
tional and working memory templates for discrete features
[77–81]. Thus, it is likely, in our opinion, that such probabilistic
language is more naturally suited to describe representations in the
human brain. FDL, in turn, is naturally suited to study representa-
tions as it provides an assumption-free continuous description of
them. We hope that the addition of this method to the repertoire of
commonly used techniques for studying visual attention, memory,
or learning processes will bring exciting new discoveries.
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