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Perception allows us to extract information about regularities in the environment. Observers can quickly
determine summary statistics of a group of objects and detect outliers. The existing body of research has,
however, not revealed how such ensemble representations develop over time. Moreover, the correspon-
dence between the physical distribution of features in the external world and their potential internal rep-
resentation as a probability density function (PDF) by the visual system is still unknown. Here, for the
first time we demonstrate that such internal PDFs are built during visual search and show how they
can be assessed with repetition and role-reversal effects. Using singleton search for an oddly oriented tar-
get line among differently oriented distractors (a priming of pop-out paradigm), we test how different
properties of previously observed distractor distributions (mean, variability, and shape) influence search
times. Our results indicate that observers learn properties of distractor distributions over and above
mean and variance; in fact, response times also depend on the shape of the preceding distractor distribu-
tion. Response times decrease as a function of target distance from the mean of preceding Gaussian dis-
tractor distributions, and the decrease is steeper when preceding distributions have small standard
deviations. When preceding distributions are uniform, however, this decrease in response times can be
described by a two-piece function corresponding to the uniform distribution PDF. Moreover, following
skewed distributions response times function is skewed in accordance with the skew in distributions.
Indeed, internal PDFs seem to be specifically tuned to the observed feature distribution.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Unlike the artificial displays used in many laboratory experi-
ments, most real life scenes are internally consistent. Colors, lines
and shapes all stem from objects in the world and we expect prop-
erties of one part of an object to be relatively similar to properties
of another part of this object. Moreover, similar objects, such as
leaves on trees or windows of a building, often appear together.
The ability to extract regularities in the external world would
therefore be useful for guiding vision. Studies of ‘‘ensemble repre-
sentations” do, indeed, demonstrate that we are reasonably good at
judging the summary statistics of stimuli (Albrecht & Scholl, 2010;
Alvarez, 2011; Alvarez & Oliva, 2008; Ariely, 2001; Chong &
Treisman, 2003, 2005; Dakin & Watt, 1997; Parkes, Lund,
Angelucci, Solomon, & Morgan, 2001). Such statistics could be
more useful for predicting the environment than individual
features, especially in peripheral vision (Balas, Nakano, &
Rosenholtz, 2009; Rosenholtz, Huang, Raj, Balas, & Ilie, 2012).
Yet, little is known about how the visual system represents such
summary statistics and how such representations develop over
time.
2. What is encoded?

Human observers’ have the ability to estimate measures of cen-
tral tendency such as a mean, for position, orientation, size, motion
speed or direction, and other features (see reviews in Alvarez,
2011; Haberman & Whitney, 2012). It is less clear whether obser-
vers encode more complex information about feature distributions.
Atchley and Andersen (1995) found that observers were able to
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pick the set of moving dots having a different velocity distribution
from others in mean or variance but not in skewness or kurtosis.
Similarly, Dakin and Watt (1997) found that when observers are
required to make judgements related to the orientation of two
intermixed sets of stimuli, they utilize information about variance
but not skewness of the overall distribution (see review in Dakin,
2015). Additionally, Michael, de Gardelle, and Summerfield
(2014) found that when observers judge the average shape or color
of stimulus sets, they are more efficient if feature variance is con-
stant in consecutive sets. While higher variance made the task
more difficult overall, switching from high to low variance or vice
versa affected performance even further. Importantly, they also
demonstrated that this effect is not simply due to changes in task
demands, and therefore does not reflect differences in cognitive
control. The authors argued that variance priming of this sort is fast
and automatic as it works for intervals as short as 100 ms and
occurs both for task-relevant and task-irrelevant features.
Norman, Heywood, and Kentridge (2015) used perceptual adapta-
tion to show that observers automatically encode variance in ori-
entation. Observers who adapted to a set of Gabor patches with
high orientation variance subsequently perceived a test set as less
variable while those who adapted to a low-variance set perceived a
test set as more variable as compared to no adaptation. Following
Morgan, Chubb, and Solomon (2008) and Norman et al. (2015) sug-
gest that there might be a specific variance-detection mechanism
broadly tuned to high or low variance. In sum, previous studies
demonstrate that observers are able to detect variance of distribu-
tions in feature space. Unknown, however, is whether they encode
variance simply as a range, use a distribution-based approxima-
tion, or a broad filter of some sort. Studies of observers’ ability to
extract more complex properties of distributions are scarce and
the few existing ones (Atchley & Andersen, 1995; Dakin, 2015;
Dakin & Watt, 1997) have yielded negative results.

A major methodological hurdle to the study of more complex
statistics in ensemble representations involves a convenient way
of assessing the distributions. For example, the point of subjec-
tive equivalence between two stimuli might be estimated by
measuring thresholds. Similarly, repetition benefits in averaging
(de Gardelle & Summerfield, 2011; Michael et al., 2014) can be
used to show that information about variance is encoded.
However, studying the point of subjective equivalence between
two variances will yield little information about the representa-
tion of the variance because the variance can depend on
range, standard deviation, absolute deviation, or on a number
of other summary statistics; or might not even be statistical at
all. A novel method for assessing ensemble perception is there-
fore needed.
3. Priming of pop-out as a way to assess ensemble
representation

We propose a novel approach of studying ensemble representa-
tions and use it to show that observers encode the shape of distrac-
tor distributions in feature space over a series of visual search
trials. We exploit the well-known ‘‘priming of pop-out” effect
(Maljkovic & Nakayama, 1994) to assess learning of probability dis-
tributions. In priming of pop-out, trial-by-trial repetition of target
or distractor features in a singleton search task leads to shortened
response times (RTs), while switches between target and distractor
features increase RTs even more than the appearance of novel fea-
tures (Kristjánsson & Driver, 2008; Lamy, Antebi, Aviani, & Carmel,
2008; Wang, Kristjánsson, & Nakayama, 2005), and these effects
are cumulative over multiple trials (Maljkovic & Nakayama,
1994). Such attentional priming can influence search at feature,
feature-dimension, or object levels, depending on stimuli and task
demands (Campana, Pavan, & Casco, 2008; Kristjánsson, 2006;
Kristjánsson & Campana, 2010; Kristjánsson, Saevarsson, &
Driver, 2013; Lamy et al., 2008; Meeter & Olivers, 2006; Muller,
Reimann, & Krummenacher, 2003; Ásgeirsson & Kristjánsson,
2011). Moreover, not only specific features but the relationships
between target and distractor features can be primed as well
(Becker, 2008, 2010; Meeter & Olivers, 2014).

We suggest that priming of pop-out effects reveal internal mod-
els of target and distractors learned by observers. If the model is
accurate and search parameters are consistent over time, RTs are
faster. By varying the degree to which previously repeated distri-
butions match the new one, the internal model can be assessed.
Of particular interest is ‘‘distractor to target” role-reversal, that
is, when the target has the features of a previously learned distri-
bution of distractors. Such role-reversal usually results in particu-
larly long search times (Kristjánsson & Driver, 2008). For example,
if distractors are blue and targets red over several trials and the
target then becomes blue, search is more difficult than when the
target becomes yellow. The target represents a single point in a
feature space and we suggest that it can therefore be used as a
‘‘probe” to determine the internal representation of probability of
the distractor at this point in feature space. This probability can
vary, for example, depending on the number of repetitions or the
distribution of distractors features. If distractors have been blue
and only blue, the probability of observing distractors in the ‘‘blue”
part of feature space is high and for the others parts it is low.
Hence, search will be longer when the target is blue. If distractors
have been blue and sometimes green, then the probability of
observing distractors is high in the blue part, lower in the green
part, and lowest in other parts of the feature space. Hence, search
times will be the slowest when the target is blue, somewhat faster
if the target is green, and the fastest when target is neither green
nor blue. By varying the position of a target in a feature space rel-
ative to a preceding distractor distribution it is possible to estimate
observers’ internal representations of the probability density func-
tions (PDF) of that distribution. Unlike the methods previously
used in studies of summary statistics this will allow a relatively
precise estimation of corresponding internal models.

Comparison with statistical data analysis can be appropriate
here: The same statistics (i.e., mean and standard deviation) can
describe two qualitatively different distributions, while plotting
the distribution density immediately reveals the differences
(Fig. 1). Similarly, probing different points in feature space with
role-reversal effects allows the ‘‘plotting” of the underlying proba-
bility density of previously learned distractor distributions in fea-
ture space using RTs as an indicator of probability.

In sum, distribution of stimuli features can be represented as a
PDF that describes the relative probability that a feature will take a
given value. We assume that the visual system operate in a similar
way, assigning probabilities of observing specific stimuli or stimu-
lus categories (such as target or distractors) for parts of feature
space in accordance with previous experience. In a visual search
task, response times would, among other factors, depend on the
probabilities learned in previous trials. The exact mapping
between physical features of stimuli and the probabilities assigned
to them by observers and between these probabilities and
response times is unknown. Although there are well-known psy-
chophysical laws describing the mapping of single stimuli to their
representations, there is no guarantee that these laws can be
applied in the same way independently of stimulus probability,
distance from the mean, spatial density, etc. (related issues are
studied in case of texture representation, e.g. Rosenholtz, 2014,
but probabilities do not play a central role there). But we can
assume that the relationship between physical and perceptual
domain is monotonic: the lower the probabilities in physical space,
the lower are the probabilities in perceptual space and the



Fig. 1. Five examples of distributions of 25 tiles varying in lightness. While summary statistics (means and standard deviations) in each case are the same, plotting
distribution densities (bottom row) reveals qualitative differences. These differences are also immediately perceivable when each distribution is translated to the lightness of
tiles (top row).
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response times are subsequently longer. Knowing the input (prob-
abilities in physical space) and the output (response times) we can
assess the corresponding internal model.
4. Summary statistics in visual search

Summary statistics in visual search have mostly been studied
by researchers interested in effects of distractor heterogeneity
(Avraham, Yeshurun, & Lindenbaum, 2008; Mazyar, van den Berg,
Seilheimer, & Ma, 2013; Nagy, Neriani, & Young, 2005;
Rosenholtz, 2001; Utochkin, 2013; Vincent, Baddeley, Troscianko,
& Gilchrist, 2009), which has detrimental effects on visual search
performance (Duncan & Humphreys, 1989). Importantly,
Rosenholtz (2001) demonstrated that this effect can be success-
fully modelled using a best-normal model. This model describes
a distractor distribution as the best Gaussian approximation avail-
able, involving the assumption that observers might fail to repre-
sent complex distributions and instead represent them only with
means and standard deviations. The success of this model shows
that observers may indeed represent distractor feature distribu-
tions as a set of summary statistics rather than as individual
elements.

This conclusion is further supported by data obtained by
Rosenholtz et al. (2012). They assumed that peripheral vision
allows us to extract summary statistics but not information about
individual items. Using scrambled stimuli (‘‘mongrels”) with the
same summary statistics as regions of visual search displays, they
found that several classical visual search asymmetries (e.g., search
for Q among Os is more efficient than search for O among Qs) can
be predicted by differences in discriminability between such mon-
grels. The results indicate that summary statistics can guide visual
search by providing useful ‘‘snapshots” of the unattended regions.

However, showing that a model can predict performance does
not necessarily imply that such models actually describe what
occurs during human visual search. Corbett and Melcher (2014)
took a step in that direction by demonstrating that stable summary
statistics increase search efficiency even when individual items
change from trial to trial. The effect of stable summary statistics
accumulated over trials reach a plateau after four repetitions. They
only studied effects of the distribution mean, however, keeping all
other parameters constant.

How do observers represent distractor distributions in visual
search and what predictions can be made regarding priming of
pop-out? Based on the model proposed by Rosenholtz (2001) we
might predict that observers will use Gaussian approximations
for a relatively useful description of the distractors. From this
perspective, further information about the shape of the distribu-
tion, such as its skewness, kurtosis, and higher order moments, is
unnecessary and will not be encoded. Accordingly, RTs should
depend on the interaction between present target position relative
to the mean and standard deviation of previous distractor distribu-
tions. On the other hand, studies of orientation variance suggest
that a specific mechanism for variance estimation may exist
(Morgan et al., 2008; Norman et al., 2015). It is possible that obser-
vers simply encode variance as relatively low or relatively high
along with the mean. We would then expect priming effects from
the variance (Michael et al., 2014), and priming effects from the
mean (Corbett & Melcher, 2014). The crucial point of that predic-
tion is that the two effects should be independent, so that there
will be no interaction between the position of the target (in feature
space) relative to the previously learned mean of distractor distri-
butions and its standard deviation. This account would also predict
that the shape of the previously learned distribution should have
no effect on RTs.

The final possibility is that observers encode information about
the distribution shape. This could be possible using either a higher-
order statistics or by density estimation at different points of fea-
ture space (these mechanisms are discussed in more details in
General Discussion). Previous attempts to find effects of distribu-
tion parameters other than mean and standard deviation have
involved single presentations where observers make explicit judg-
ments about the distributions (Atchley & Andersen, 1995; Dakin &
Watt, 1997). In our current experiment, in contrast, observers are
exposed to multiple examples of the same distractor distribution
over several search trials and no explicit judgments about distribu-
tions are needed.

Note that learning distribution shapes may have a functional
significance. For example, if a uniform distribution is approximated
as Gaussian this will lead to an underestimation of distractors from
the tails of the distribution, and unexpected distractors should
slow search down. This entails that after viewing several examples
of stimuli drawn from the same distribution, observers need to
learn not only its mean and standard deviation but also other
parameters.

In this study we bridge two previously disparate research areas:
serial effects in visual search and ensemble representations. We
believe that both areas will benefit both theoretically and empiri-
cally from such integration. In fact, for serial effects this will create
a new way of describing representations of targets and distractors;
and for ensemble studies this will provide a way to assess how
ensembles are formed and applied. Our main assumption is that
representations underlying serial effects are not of specific distrac-
tors and target features, but rather representations of target and
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distractor feature distributions. Based on the three accounts out-
lined above we measured observers’ ability to learn the parameters
of distractor distributions. In Experiment 1, we test whether obser-
vers learn the mean and standard deviation separately or rather if
the two parameters are learned together and may be treated as a
probability density function in feature space. In Experiment 2 we
further test whether observers can learn the shape of distractor
distributions (i.e. uniform vs. Gaussian distributions) in addition
to their mean and standard deviation. In Experiments 3A, 3B and
3C we aim to replicate the findings of Experiment 2 controlling
for potential confounds; and in Experiment 4 we test whether
observers can also learn another characteristic of the shape of dis-
tractor distributions, namely, their skewness.
5. Experiment 1

5.1. Participants

Ten observers (4 female, 20–30 years old, mean age 25.6 years;
two were aware of the goal of the experiment, the rest naive) took
part in two experimental sessions taking approximately 40 min
each. The observers were students or staff from the cognitive psy-
chology laboratory at the Faculty of Psychology, St. Petersburg
State University, Russia.
5.2. Method

The experiment was run on a DELL Vostro 5470 laptop with a
14 in. display with 1366 � 768 pixel resolution using PsychoPy
(Peirce, 2007). Viewing distance was �57 cm. Observers searched
for an oddly oriented line in a search array of 36 lines arranged
in a 6 � 6 grid subtending 16 deg � 16 deg in the center of a screen.
The length of each line was 1 deg and their positions were slightly
jittered by randomly adding a value between ±0.5 deg to both ver-
tical and horizontal coordinates.
0 30 60 90 120 150 180 0 30 60 90 1

Orienta

A B

Fig. 2. Top row: examples of the stimuli in Experiment 1; (A) Distractor standard deviati
mean = 166, target orientation = 82 and (C) DSD = 15, distractor mean = 66, target orien
distributions (in red) from the corresponding examples in the top row. (For interpretati
version of this article.)
The distractor lines on each trial were picked randomly from a
Gaussian distribution with a standard deviation (distractor stan-
dard deviation – DSD) of 5, 10, or 15 deg (see Fig. 2). The trials were
organized in streaks of 5–7 trials, where the mean and standard
deviation of the distractor distribution were constant (Fig. 3). Tar-
get orientation was set randomly for each streak so that target-to-
distractor distance ranged from 60 to 120 deg. Within-streak target
orientation was constant.

We used 9 gradations of shifts between distribution means
from �80 to +80 deg in 20 deg steps (Fig. 4). Each gradation was
repeated 5 times for each distribution pair (i.e., a transition from
a DSD = 5 to a DSD = 15 and a +40 deg distance between means
was repeated 5 times). The order of streaks was randomized for
each observer by creating a string of minimal length from a ran-
domly shuffled sequence of pairs of distributions with a different
DSD. In total, there were 273 streaks (minimal possible length
for all combinations of conditions) in each session for each obser-
ver, or approximately 1638 trials (as the number of trials within a
streak was chosen randomly from 5 to 7, the total trial number
varied).

Observers pressed the ‘i’ key if the target line was in the upper
three rows and the ‘j’ key if the target line was in the lower three
rows. If observers made an error, the word ‘‘ERROR!” appeared in
red letters for 1 s. Observers were informed that their performance
would be scored and were encouraged to respond as fast and as
accurately as possible to increase their scores. The score for each
trial was computed as Score ¼ 10þ ð1� RTÞ � 10 for correct
answers, where RT is response time in seconds, but for errors
¼ �jScorej � 10. The score from the previous trial was shown in
the top left corner (in green if positive, red if negative) of the screen
along with the trial number and the total number of trials. The
total score was shown during resting periods after the 100th and
200th streaks. The resting periods and scores were intended to
increase observers’ vigilance and concentration. Resting time was
unlimited, but observers were encouraged not to take too much
time for rest.
20 150 180

tion
0 30 60 90 120 150 180

C

on (DSD) = 5, distractor mean = 126, target orientation = 16; (B) DSD = 10, distractor
tation = 155. Bottom row: schematic depictions of targets (in blue) and distractor
on of the references to color in this figure legend, the reader is referred to the web
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Fig. 3. Sequence of streaks in Experiment 1. Within each streak DSD and target orientation were constant.

Shi�: +80, DSD = 10

A B

Fig. 4. Examples of distribution shifts used (panel A) and examples of role-reversals (panel B) in Experiment 1. In total, nine distractor distribution shifts were possible. Target
orientation was chosen randomly for each streak, see details in text.
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5.3. Results

We used linear mixed-effects regression (LMER) to analyze
effects of target-distractor distance and distribution shifts on RTs.
LMER takes non-independence in the data due to repeatedmeasures
on the same observers into account without data aggregation (see
e.g., Jaeger, 2008). LMER does not provide p-values due to inherent
uncertainty in the computation of the degrees of freedom for com-
plex models. Instead, t-criteria values above 2 or below �2 can be
used as guidance for significance, roughly corresponding to the
usual p < 0.05 level (Baayen, Davidson, & Bates, 2008; Bates, 2006).

5.3.1. Average performance
As expected, RTs were longer and accuracy lower with larger

distractor distributions (DSD, Table 1). A one-way repeated-
measures ANOVA showed a significant effect of DSD on both RTs
(F(2,18) = 96.35, p < 0.001, g2

G ¼ 0:417) (here and later we analyze
log-transformed RTs but figures and tables show unmodified RTs
for clarity), and accuracy (F(2,18) = 44.25, p < 0.001, g2

G ¼ 0:497).
Table 1
Response times and accuracy as a function of the standard deviation of the distractor
distribution in Experiment 1.

DSD Accuracy RT (ms, correct
responses)

M SD M SD

5 0.95 0.02 620 57
10 0.93 0.03 713 80
15 0.88 0.05 820 106
As Fig. 5 shows, the more different the target was from the dis-
tractors, the easier the search. LMER demonstrated a negative lin-
ear target-distractor distance effect on RTs (B = �1.94 (0.37),
t = �5.22), qualified by a quadratic effect (B = 3.66 (0.37), t = 9.83).

5.3.2. Repetition effects
Within streaks, RTs decreased following the first repetition,

reaching a plateau approximately at the third trial. Accuracy
tended to increase after the first trial in a streak (Fig. 6) for DSDs
of 10 and 15. Linear mixed-effects regression with Helmert con-
trasts (comparing each level of the trial number with the average
of the following levels) on RTs confirmed these observations indi-
cating that the first and second trials in each streak differed from
the later trials for DSD = 10 and DSD = 5 (t < 2 for the trials after
the second one), but for DSD = 15 only the first trial differed
from the rest. For accuracy, only the first trial for DSD = 15 differed
from the rest. In sum, repetitions affected RTs more than accuracy.

5.3.3. Distribution shifts
We only analysed the first correct trials in each streak that were

preceded by correct trials to avoid post-error slowing effects
(Danielmeier & Ullsperger, 2011). Fig. 7 shows that RTs followed
a U-shaped function: the larger the shift between means of distri-
butions, the slower participants responded (B = 5.17 (0.37),
t = 14.17 for the quadratic effect of distribution shift), and the more
errors they made (B = 10.12 (3.37), t = 3.00).

Fig. 8 shows that not only the mean, but also the SD of previous
distractor distributions (DSD) influences RTs. A mixed-effects
regression controlling for the effects of target orientation,



All By DSD

600

700

800

900

60 80 100 120 60 80 100 120

Target−distractors distance (in degrees)

R
T 

of
 c

or
re

ct
 a

ns
w

er
s

DSD
5
10
15
All

Fig. 5. Quadratic trends of target-distractor distance effects in Experiment 1. Dots show mean response times, shaded areas show 95% confidence intervals based on a
quadratic regression fit.

600

700

800

900

0 2 4 6

R
T 

of
 c

or
re

ct
 a

ns
w

er
s

0.86

0.90

0.94

0.98

0 2 4 6

%
 c

or
re

ct DSD

5

10

15

Trial number within streak

Fig. 6. Repetition effects within streak in Experiment 1. Bars show ±1 SEM.

600

700

800

900

−50 0 50

R
T 

of
 c

or
re

ct
 a

ns
w

er
s 

(m
s)

0.80

0.85

0.90

0.95

−50 0 50

%
 c

or
re

ct DSD

5

10

15

Shift between means of distractor distributions (degrees)

1000

Fig. 7. Response times and accuracy as function of changes in distractor distributions between streaks in Experiment 1. Bars show ±1 SEM.

A. Chetverikov et al. / Cognition 153 (2016) 196–210 201



Current DSD =  5 Current DSD =  10 Current DSD =  15

600

700

800

900

1000

−50 0 50 −50 0 50 −50 0 50

Shift between means of distractor distributions (degrees)

R
T 

of
 c

or
re

ct
 a

ns
w

er
s 

(m
s)

DSD in previous streak 5 10 15

Fig. 8. Response times as function of previous and current distractor distributions and the shift between their means in Experiment 1. Bars show ±1 SEM.

202 A. Chetverikov et al. / Cognition 153 (2016) 196–210
target-to-distractor distance, and a shift in means showed that for
DSD = 5, search takes longer when previous DSD = 15 than when
previous DSD = 10, t = 3.57, p < 0.001. Similarly, for DSD = 10 search
takes longer when previous DSD = 15 than when previous DSD = 5,
t = 4.07, p < 0.001. However, for DSD = 15 previous DSD does not
seem to influence RTs. No significant effects of previous DSD on
accuracy were found in any condition.

5.3.4. Role-reversals
A target with an orientation close to the mean of the previous

distractor distribution (distractor to target switch) or conversely,
distractor distributions with a mean close to the previous target
(target to distractor switch) may have detrimental effects on per-
formance over and above distribution shifts because of target/dis-
tractor role reversal effects (Kristjánsson & Driver, 2008; Lamy
et al., 2008). We analysed distractor to target switches treating
RTs on the first trial in a streak as a function of the distance
between the current target and the mean of the previous distractor
distribution (target distance to previous distractor, T-PD). Given
that target-distractor distance was randomized for each streak this
Current DSD =  5 Current
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Fig. 9. Response times in Experiment 1 as a function of the distance between targets and
row). Shaded areas show 95% confidence intervals based on local regression fit.
effect is partially independent of the shift between means of dis-
tractor distributions, and could therefore be analysed separately.

If a distractor distribution is inhibited during repetitions, RTs
should increase when a target falls within that distribution on a
new streak. Fig. 9 shows that role-reversals have a strong effect
for all DSDs as RTs gradually increase with the decrease of T-PD
distance. Gaussian distribution implies a non-linear decrease of
probability and hence the effect of previous DSD in interaction
with T-PD should also be non-linear. Fig. 9 shows evidence of such
non-linear dependency. To quantify it we used two complimentary
approaches. First, we split the T-PD distance into 15 deg bins
(15 deg cover 99.97% of the distribution with SD = 5) and compared
the RTs as a function of previous DSDs in each of the bins and for
each current DSD, using mixed-effects regression with pre-set con-
trasts. RTs were different depending on the previous DSD (t > 2) for
bins [15, 30] and [30, 45] for current DSD = 10, and for bin [0, 15]
for current DSD = 5. We then used segmented regression (with
the segmented package in R; Muggeo, 2003, 2008) to test, whether
RTs decreased monotonically as a function of T-PD or whether
there was a significant change in the rate of decrease at some
 DSD =  10 Current DSD =  15
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1 Note that this manipulation also changed the SD of the distributions: for the
uniform distribution the resulting SD = 18.26 (on average on a given trial) while for
the Gaussian distribution the SD = 14.65. The effect of SD was assessed in Experimen
3B. The labels in text for the Gaussian distribution show SD = 15 to account for the
fact that the distractors lines were drawn from a distribution with this standard
deviation although range constraints change the resulting value.
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T-PD value. For DSD = 15, there were no significant breakpoints
indicating a monotonic decrease of RT as function of T-PD regard-
less of previous DSD. For DSD = 10, however, there was a change in
T-PD effect on RTs following DSD = 5 with a breaking point located
at 9.75 (Davies test p = 0.020), but not following DSD = 15 (the best
estimate for break point was at 67.00, p = 0.161). The effect of T-PD
on RT following DSD = 5 changed from B = �30.60, 95% CI =
[�56.57, �4.62] to B = �1.48, 95% CI = [�2.73, �0.23], that is, from
a steeper to a shallower decrease. For DSD = 5 following DSD = 10
there was a tendency-level breaking point at 77.31 deg distance,
p = 0.082, with slopes changing from B = 2.17, 95% CI = [�8.68,
13.01] to B = �1.40, 95% CI = [�2.24, �0.57], indicating a flat end
of the RT pattern as function of the T-PD curve. For DSD = 5 follow-
ing DSD = 15 no significant break point was found (the best esti-
mate was at 4.97, p = 0.210).

The target to distractor switch effect, analysed as the distance
between the mean of the current distractor distribution and the
previous target (distractor distance to previous target, D-PT), could
not explain the results. When both D-PT and T-PD are included in
the regression model, the effect of T-PD is significant (B = �0.31
(0.04), t = �7.75), while the effect of D-PT is not (B = �0.01 (0.02),
t = �0.54).

5.4. Discussion

Experiment 1 shows that observers can learn information about
the variability of distractor sets during visual search. We replicated
classic effects of distractor variability and target-distractor dis-
tance (Duncan & Humphreys, 1989). We further demonstrated that
priming of pop-out (Kristjánsson & Campana, 2010; Maljkovic &
Nakayama, 1994) can depend on a statistic of a feature distribution
(mean orientation), instead of a specific feature value (orientation)
replicating the results of Corbett and Melcher (2014). Analysis of
POP effects further demonstrated that SDs of the preceding distrac-
tor distribution (DSD) affect RTs: following a more heterogeneous
distribution, observers were slower in finding a target, though
accuracy did not change.

The exact shape of the distribution (determined in this experi-
ment by SD) affects RTs for role-reversals, when a target falls
within the range of the previous distractor distribution. Learning
of distribution shape modulates RTs on switch trials (Fig. 9, top
rows) roughly following the PDF of the learned distribution
(Fig. 9, bottom rows). The comparison between the response time
following a distribution with DSD = 5 and that following a distribu-
tion with DSD = 15 (middle column) reveals a steeper decrease of
RTs as a function of increasing distance between current target
and a previous distractor (T-PD) for the former than for the latter.
The non-linear relationship between T-PD and RTs is confirmed
both by analysis of T-PD split into bins and by segmented regres-
sion and corresponds to the non-linear probability density function
of distractor distributions.

These results suggest that mean and variance are not encoded
independently. RTs change as a function of the interaction between
mean and standard deviation of the preceding distribution. If the
current target is far from the mean of the previous distractor distri-
bution, RTs vary less as a function of its variance than when the
target is within this range. This can be expected if observers encode
mean and variance together to describe the distractor distribution.
However, the variance of a preceding distribution has an effect
even when the target is outside its range. Moreover, if present dis-
tractors have low heterogeneity (DSD = 5), the mean and variance
of previous distributions have independent effects. It is possible
then that variance may be encoded independently in addition to
the co-encoding of mean and variance.

The interaction between the mean and variance of preceding
distributions needs further explanation. Two models discussed in
the introduction may explain this result: a normal approximation
suggested by Rosenholtz (2001) or encoding of distribution shape.
It is impossible to distinguish between them by the data from
Experiment 1 as we only used Gaussian distributions. In Experi-
ment 2 we therefore compared Gaussian and uniform distributions
to further test the hypothesis that observers encode distribution
shape. Additionally, the SD of the distribution in Experiment 1
was confounded with its range. The range of the distribution
affects commonly used measures of distractor heterogeneity, such
as cover – the ratio of distractor range in perceptual space to the
distance between target and the nearest distractor (Avraham
et al., 2008). To disentangle the effect of the range and the shape
of the distribution, the range was kept constant.

6. Experiment 2

6.1. Participants

Ten observers (all but one previously participated in Exp. 1; the
new naïve observer was trained on a singleton search task for 1000
trials) took part in two experimental sessions taking approximately
20–30 min each. The observers were students or staff from the cog-
nitive psychology laboratory at the Faculty of Psychology, St.
Petersburg State University, Russia.

6.2. Method

The same general procedure as in Experiment 1 was used, while
this time the distractor lines on each trial were picked randomly
from either a Gaussian or a uniform distribution. The Gaussian dis-
tribution had DSD = 10 (Gauss10) or DSD = 15 (Gauss15). The uni-
form distribution (Uniform) had a range of 60 deg (±2 ⁄ 15 deg, the
area accounting for 95% of Gauss15; Fig. 10). To keep the range
exactly the same, we added two lines with an orientation of
Mean + 30 deg and Mean � 30 deg to the Gauss15 and Uniform
distributions and replaced all lines outside the ±30 deg range with
novel ones. The range of both the Gauss15 and Uniform distribu-
tions was therefore 60 deg on each trial, but the PDFs of the distri-
butions within that range differed.1

We used a Gaussian distribution with DSD = 10 as the testing
one and the other two distributions as priming ones to compare
the influence of distributions with the same range. The distribution
with DSD = 10 was chosen to avoid floor and ceiling effects. We
therefore counterbalanced the experiment with regards to the
distribution shifts between streaks so that Gauss10 was preceded
five times by each of two other distributions (Fig. 11) for each gra-
dation of the distance between previous and current distribution
means (�80 to 80 deg in 20 deg steps). In total, there were 180
streaks with a pause after 100 streaks.

6.3. Results

6.3.1. Average performance
Performance was comparable for the two distributions with the

larger range, though for the uniform distribution RTs were longer
and accuracy slightly lower (Table 2). A one-way repeated mea-
sures ANOVA revealed a significant effect of distractor distribution
on both RTs, F(2,18) = 53.31, p < 0.001, g2

G ¼ 0:234, and accuracy,
t
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Fig. 10. Top row: example stimuli in Experiment 2; (A) Gauss10, distractor mean = 163 deg, target orientation = 71 deg; B: Gauss15 = 15 deg, distractor mean = 103 deg,
target orientation = 15 deg; C: Uniform, distractor mean = 123 deg, target orientation = 61 deg. Bottom row: target (in blue) and distribution of distractors (in red) from the
examples in the top row. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. Streak sequence in Experiment 2.

Table 2
Response times and accuracy as a function of the distractor distributions in
Experiment 2.

Distractors Accuracy (%) RT (ms, correct
responses)

M SD M SD

Gaussian, DSD = 10 0.95 0.02 621 73
Gaussian, DSD = 15 0.92 0.03 725 107
Uniform 0.89 0.05 764 118
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F(2,18) = 23.67, p < 0.001, g2
G ¼ 0:362. A comparison between the

two larger-range distributions also showed a significant effect on
RTs, t(9) = 3.16, p = 0.012, and accuracy, t(9) = 4.08, p = 0.003.

As in Experiment 1, the more different the target was from dis-
tractors, the easier the search (Fig. 12). A quadratic effect of target
distance was found for Gauss10, B = 1.32 (0.27), t = 4.96, Gauss15,
B = 3.49 (0.35), t = 10.10, and Uniform distributions, B = 1.64
(0.38), t = 4.34. The effect of target distance was more pronounced
for the Gauss15 distribution, B = 4.74 (0.79), t = 5.98, than for
Gauss10, but the difference between Gauss10 and Uniform distri-
butions was not significant, B = 1.39 (0.80), t = 1.73.
6.3.2. Repetition effects
As in Experiment 1, RTs decreased for the first repetition reach-

ing a plateau approximately at the second trial. Accuracy increased
following the first trial in a streak (Fig. 13). Linear mixed-effects
regression with Helmert contrasts confirmed these observations
indicating that the first and second trial in each streak differed
from the later trials for Gauss10 (t < 2 for the trials after the second
one), but for Gauss15 and Uniform only the first trial differed from
the rest. For accuracy, the first trial for Gauss10 and Gauss15 dif-
fered from the rest, and for Uniform both the first and the second
trials were less accurate than the others.

6.3.3. Distribution shifts
Fig. 14 shows effects of distribution shifts on RTs and accuracy

of the Gauss10 distribution. Both RTs and accuracy were the same
whether the previous distribution was Uniform or Gaussian (all
ts < 2).

6.3.4. Role-reversals
The PDF of the uniform distribution is different from the PDF of

the Gaussian in that it consists of two different parts – a uniform
probability within the distribution range and zero probability else-
where. Consequently, one would expect the response time function
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to have two parts as well. To quantify the differences, we used a
segmented regression. The results showed that following a Uni-
form distribution, RTs could be approximated by two separate
regressions, split at 32.00 deg of previous distractor-to-target dis-
tance (Fig. 15). The slope of the first part did not significantly differ
from zero, B = 0.79, 95% CI = [�2.90, 4.48] (values represent slope
and CI for untransformed RTs, log-transformed data yielded the
same results). For the second part, the slope was significantly neg-
ative, B = �3.90, 95% CI = [�5.41, �2.40]. Davies’ test confirmed
that the difference in slopes for the two parts was significant,
p = 0.009. Following the Gauss15 distribution, there was no signif-
icant breakpoint; the RTs decreased monotonically with increasing
target-to-previous-distractor-mean distance (Fig. 15).

6.4. Discussion

Experiment 2 demonstrates that not only are observers sensi-
tive to the variance of the distribution, but also to its shape. If dis-
tractors were uniformly distributed during the preceding streak,
RTs were similar when the target was within the range of this dis-
tribution and decreased when the target did not overlap with the
distribution. If, on the other hand, distractors were drawn from a
Gaussian distribution, RTs decreased monotonically the further
the target was oriented away from the mean of the previous dis-
tractor distribution.
2 4 6

Distribution
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Gaussian, SD = 15
Uniform

reak

in Experiment 2. Bars show ±1 SEM.

50 0 50
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r distributions between streaks in Experiment 2. Bars show ±1 SEM.
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The data from Experiment 2 confirm the findings from Experi-
ment 1: mean and variance of the distribution are co-encoded.
More importantly, however, the results show that observers do
not use the normal approximation (Rosenholtz, 2001) when the
distractor distribution is not normal. Instead, the shape of the dis-
tribution is taken into account. To our best knowledge, this is the
first demonstration of the encoding of distribution shape over
the course of several trials in visual search.
7. Experiments 3A–3C

The findings of Experiment 2 clearly indicate that observers
encode the shape of the distractors distribution. Given the novelty
of this findings we replicated this experiment with additional con-
trols for possible confounds.
7.1. Method

Experiments 3A–3C followed the same procedure as Experi-
ment 2. Experiment 3A was a direct replication. In Experiment
3B, in order to directly assess the role of the shape vs. the role of
variance of previous distractor distributions, instead of matching
the range of uniform and Gaussian (SD = 15) distributions, we
matched their SD. Due to the fact that the two parameters are con-

nected (for the uniform distribution SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
12 range

2
q

), in order to

have the same SD = 15 we had to decrease the range of the uniform
distribution to 52 deg. In Experiment 3C, in order to hinder learn-
ing of target’s parameters so to isolate the effect of distractor dis-
tributions, the target was chosen randomly on each trial instead
of having constant orientation in each streak. Furthermore, in
Table 3
Response times and accuracy as a function of the distractor distributions in Experiments

Distractors Exp. 3A: Replication Exp. 3B: E

Acc. RTcorr Acc.

M SD M SD M

Gaussian, SD = 10 0.96 0.03 803 179 0.96
Gaussian, SD = 15 0.93 0.05 1022 270 0.91
Uniform 0.92 0.05 1172 366 0.94
Experiments 3B and 3C, streaks of trials with a Gaussian distribu-
tion and SD = 10 had only 1 or 2 trials because these streaks were
used only for testing the effects from previous distribution. All
observers were trained before the experiments on a singleton
search task for 500 trials.

7.2. Participants

Eleven observers (four female, age M = 35.67) participated in
Experiments 3A–3B. All of them were staff or students at the
School of Health Sciences, University of Iceland. Two of them were
students who participated as part of a course requirement while
the rest participated without additional reward. The response
times for one observer in Experiment 3A were too slow
(M = 1612 ms, as opposed to M = 1054 ms for the rest of observers)
and the data from this observer in Experiment 3A were replaced
with the data from a new observer.

7.3. Results

7.3.1. Average performance
Table 3 shows that the uniform distribution was more difficult

for observers than the Gaussian distribution with SD = 15 in Exper-
iments 3A (t(10.0) = �5.39, p < 0.001 and t(10.0) = 2.25, p = 0.048
for RT and accuracy, respectively) and 3C (t(10.0) = �7.52,
p < 0.001 and t(10.0) = 1.95, p = 0.080), but in 3B the effect was
the opposite (t(10.0) = 3.94, p = 0.003 and t(10.0) = �7.87,
p < 0.001). In 3B, the standard deviation (SD) but not range was
controlled, and as a consequence the range of the uniform distribu-
tion was smaller. These results indicate that both range and SD are
important for search efficiency. The effects of target-distractor dis-
tance, repetition effects, and the effects of distribution shifts were
the same as in Experiment 2 and are not reported here for the sake
of brevity.

7.3.2. Role-reversals
Role-reversals were analysed in the same way as in Experiment

2 (Fig. 16). For Experiment 3A, after a switch from a uniform distri-
bution, a segmented regression showed a breakpoint at 24.97 deg
(Davies’ test p = 0.003), with the flat segment (B = 5.47, 95% CI =
[�5.17, 16.12]) followed by a segment with a negative slope
(B = �6.38, 95% CI = [�8.94, �3.82]). Following the Gaussian distri-
bution, however, the breakpoint was not significant (p = 0.732).
Similarly, in Experiment 3B the breakpoint was significant follow-
ing the uniform distribution (20.04 deg, p = 0.019) with a flat first
segment and a negative-slope in the second segment (B = 2.50,
95% CI = [�5.90, 10.90] and B = �3.40, 95% CI = [�4.78, �2.03]).
Again, following the Gaussian distribution, there was no significant
breakpoint (p = 0.358). Finally, in Experiment 3C, again following
the uniform distribution the breakpoint was significant
(45.93 deg, p = 0.010), and the first segment was flat while the sec-
ond had a negative slope (B = 0.14, 95% CI = [�1.96, 2.24] and
B = �4.84, 95% CI = [�7.19, �2.50]). Unlike previous experiments,
however, following the Gaussian distribution in Experiment 3C
there was a significant breakpoint, but it was located at
3A–3C.

qual SD Exp. 3C: Random Target

RTcorr Acc. RTcorr

SD M SD M SD M SD

0.03 822 189 0.97 0.02 775 188
0.04 960 260 0.94 0.03 877 228
0.04 897 219 0.93 0.04 975 263
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68.00 deg (p = 0.019). The segment before this breakpoint had neg-
ative slope (B = �3.59, 95% CI = [�4.66, �2.52]) while the second
segment had a flat slope (B = 0.41, 95% CI = [�4.99, 5.81]). In con-
trast to the uniform distribution where breakpoints indicate that
observers respond similarly slowly within the range of previous
distractors distribution, this breakpoint indicates that observers
responded similarly fast when the target was far from the range
of the previous distractors distribution.

7.4. Discussion

Experiments 3A–3C replicate the results obtained in Experi-
ment 2 and further demonstrate that they cannot be explained
by differences in standard deviations of the Gaussian and uniform
distributions or by the learning of target parameters. Interestingly,
Experiment 3C where target was selected randomly on each trial
showed a presence of a breakpoint following a Gaussian distribu-
tion. But, in contrast to uniform distribution, this breakpoint indi-
cated that the segment outside the range of Gaussian distribution
had a flat slope. Given that the probability of observing a distractor
in this part is zero, a flat slope is to be expected. Yet, a flat slope
was only found in this experiment. It is possible that this is a result
of the randomly changing target as it might force observers to ana-
lyze perceptual space with more scrutiny. However, it also could be
a result of an extended training because observers participated in
this experiment after completing Experiments 3A and 3B in addi-
tion to a training session. Nevertheless, we believe that this result
is interesting enough to be investigated in future research.
Table 4
Response times and accuracy as a function of the distractor distributions in
Experiment 4.

Distractors Accuracy (%) RTcorr (ms)

M SD M SD

Gaussian, SD = 10 0.96 0.02 724 195
Triangular, left 0.95 0.02 752 202
Triangular, right 0.95 0.03 758 213
8. Experiment 4

In previous experiments we used different variants of symmet-
ric distributions. But, according to our proposal that observers can
learn distractor set distributions, observers should be sensitive to
asymmetries in distribution density functions as well. To test this,
in Experiment 4 we analysed the effects of learning skewed
distributions.

8.1. Method

Experiment 4 followed the same procedure as Experiment 3B.
But, instead of a Gaussian distribution with SD = 15 and uniform
distribution we used two variants of triangular distributions. Both
had a range of �30 to 30 deg relative to the distribution center
which varied in the same way as distribution mean in previous
studies. The ‘‘Triangular, left” distribution was skewed to the left
with a peak at 25 deg, resulting in a longer right tail. The ‘‘Triangu-
lar, right” distribution was skewed to the right with a peak at
�25 deg, resulting in a longer left tail.

8.2. Participants

The same observers participated as in experiments 3A–3C. One
observer had to leave before finishing the experiment, thus the
resulting analyses were run on the data from 10 observers (4
female, age M = 33.40).

8.3. Results

8.3.1. Average performance
Table 4 shows that both variants of the triangular distribution

were slightly more difficult than the Gaussian distribution with
an SD = 10. A repeated measures ANOVA confirmed this showing
a significant effect of distribution type both in RT, F(2,18) = 3.81,
p = 0.045, g2

G ¼ 0:00, and in accuracy, F(2,18) = 7.42, p = 0.008,
g2

G ¼ 0:03.

8.3.2. Role-reversals
To test for the effects of distribution skewness we first esti-

mated the breakpoint of RT as function of T-PD distance. In con-
trast to previous experiments, we analysed the signed distance
and not the distance in absolute degrees because the distribution
of distractors was not symmetric (Fig. 17). The breakpoint there-
fore simply corresponds to the maximum RT as function of T-PD.
We then tested for the difference in slopes to the left and to the
right of the breaking point using simple linear regression with
interaction between side (left or right) and distance to breaking
point. The analysis indicated that for triangular distribution with
longer right tail, the breaking point was at �16.15 deg with a stee-
per slope on the left B = 3.76, 95% CI = [2.16, 5.35] than on the right
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B = 2.01, 95% CI = [2.96, 1.07], t = �2.68, p = 0.008. For the distribu-
tion with longer left tail, in contrast, the breaking point was at
19.72 deg with shallower slope on the left B = 1.80, 95% CI =
[0.97, 2.63] than on the right B = 4.07, 95% CI = [5.75, 2.39],
t = 2.79, p = 0.005.
8.4. Discussion

The results of Experiment 4 are straightforward: with asym-
metric distributions of distractors the response times on the first
trial in the next streak are also asymmetric. Following a distribu-
tion with a left skew, response times as function of the distance
between target and previous distractors distribution have a steeper
slope on the left than on the right. The opposite happens after a
right-skewed distribution. Interestingly, the peak of the RT as func-
tion of T-PD (as estimated with breaking point from segmented
regression) is closer to the distribution center than the actual peak
of the triangular distribution. It also does not correspond to the
means or medians of the distributions we used (the means are
±8.3, the medians are ±10.55). Speculatively, observers might use
a weighting scheme that assigns higher weights to a particularly
important points, such as borders of the distribution.
9. General discussion

Our results demonstrate two novel and important points.
Firstly, that priming of pop-out effects can occur based on visual
statistics rather than on specific features or their conjunctions. Cor-
roborating the results obtained by Corbett and Melcher (2014) and
Michael et al. (2014) we found that observers are sensitive to the
mean and standard deviation of the previous distractor distribu-
tion. In contrast to previous studies, we demonstrate that learning
of mean and SD is an integrated process as shown by different
effects of SD depending on the distance from target to the mean
of preceding distractors in feature space. Speculatively, observers
use the mean and SD to describe a part of feature space as related
to distractors. Secondly, we demonstrate that observers can learn
information about the shape of distractor distributions. In particu-
lar, we show that following a change in distractor distribution:

(1) RTs decrease monotonically with increased distance
between target and the mean of the preceding distractor dis-
tribution (current target distance to previous distractor),
indicating that the mean is learned;

(2) larger standard deviations of preceding distractor distribu-
tions result in slower responses, indicating that information
about variance is encoded;

(3) steeper Gaussian probability density functions (PDF’s) result
in a steeper decrease of RTs as a function of previous distrac-
tor to target distance;

(4) a uniform distribution results in a two-piece function corre-
sponding to its’ PDF;

(5) a triangular distribution results in an asymmetrical distribu-
tion of response times again corresponding to its PDF.

In general, RTs follow the shape of the preceding distractor dis-
tribution, indicating that distribution shape is encoded along with
the mean and standard deviation. This occurs for Gaussian, uni-
form and skewed triangular distributions. This last result is the
most important and novel one. Learning of distribution shapes
means that observers build a probabilistic model representing an
ensemble of distractor features. That is, over several trials they
are able to gather and integrate information from separate distrac-
tors into a summary representation. It is unlikely that such infor-
mation can be gathered from a single trial, since lines were
picked randomly on each trial so they do not accurately represent
the PDF of the distribution they were drawn from. For example,
picking 35 lines from a uniform distribution with a range of
60 deg will provide on average about 27 uniquely oriented lines
that cover less than half of the distribution. However, we did not
test the effect of learning duration explicitly and it is possible that
learning satiates after two or three trials. Future studies may help
to clarify the satiation levels for statistical learning in visual search.

Our results suggest that the best-normal approximation sug-
gested by Rosenholtz (2001) is not used when observers encounter
non-normal distributions. Instead, the shape of the distribution is
taken into account. Two distinct mechanisms can explain the
observed effects. First, it is possible that observers approximate
the distractor distribution using several overlapping Gaussians
resembling a density estimation with Gaussian kernel function. A
number of different approximation methods can be used as well,
so the choice of particular method for theoretical models depends
on their biological plausibility and requires further study. Second,
it is possible that higher-order summary statistics, such as skew-
ness or kurtosis, are encoded. Previous studies have not shown that
observers use such statistics (Atchley & Andersen, 1995; Dakin &
Watt, 1997). However, we used repetitive displays, which provided
observers with different examples of distractor sets drawn from
the same distribution. Observers therefore had much more infor-
mation to estimate higher-order statistics. Describing the distribu-
tion with several statistics can be more efficient than using a
density approximation as it will allow fast comparisons between
distributions and outlier detection (Alvarez, 2011; Utochkin,
2015). This mechanism entails that observers ignore local devia-
tions, which cannot be described by the statistics that define the
distribution. With sufficient learning the former mechanism
(approximation with multiple Gaussians or other functions) should
adequately describe such local deviations. The latter mechanism
(approximation with a set of statistics) will ignore them regardless
of the amount of learning. Future studies are necessary to
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understand the specific mechanism responsible for the learning of
distribution shape.

The results pose an important question for the literature on
attentional priming: are homogenous distractors typically used in
priming studies approximated as a special kind of distribution?
For example, RTs may change as a function of previous distractor
to target distance in feature space as observed here. In other words,
a target close but not equal in feature space to previous distractors
may have detrimental effects on search efficacy. Given that we
found such effects using distractors from a Gaussian distribution
with DSD = 5, which is nearly homogenous, this is quite probable.
This would mean that even when it would be optimal to ignore
or focus on only a very small part of perceptual space, observers
nevertheless apply a broad filter. A switch from a ‘‘categorical”
view where distractor groups are treated as isolated entities
towards a ‘‘continuous” view where they are considered parts of
distributions will bring new answers and new challenges to the
field. A potential limitation is that we used only one particular type
of search – for the odd orientation. We believe that future studies
will clarify the generalizability of the findings. Particularly inter-
esting is which stages of processing are affected by repetition of
summary statistics.

Finally we note that from a methodological perspective, our
study shows that priming of pop-out can be used to assess the
development of perceptual representations. This is especially
important for studies of prediction-related frameworks. According
to hierarchical predictive accounts of cognition, mental representa-
tions are probabilistic models tested for external validity and iter-
atively corrected through Bayesian updating (Arnal & Giraud,
2012; Clark, 2013; den Ouden, Friston, Daw, McIntosh, &
Stephan, 2009; den Ouden, Kok, & de Lange, 2012; Friston, 2009,
2010; Hohwy, 2012, 2014). We propose that the language of sum-
mary statistics naturally suits predictive coding. Information about
distribution parameters allows the use of distribution probability
density functions. This enables prediction of both the probabilities
of appearance of existing stimuli and of novel stimuli within the
same feature space. For example, if we conceive of the brain as a
Bayesian observer, it is vital to assess the models used by observers
and how they are updated with new information. The paradigmwe
have introduced provides a convenient way of achieving this.

Summing up, our study demonstrates that visual statistics accu-
mulate over and above simple parameters such as means and stan-
dard deviations: the shapes of distributions are learned as well.
Note that means and standard deviations are most useful only
when the information comes from a Gaussian distribution. How-
ever, distributions of line orientations in the real world, are far
from normal (Coppola, Purves, McCoy, & Purves, 1998). Moreover,
what is important to us changes, and the distributions of signals
that should be attended and of those to ignore change conse-
quently, highlighting the need to learn probability functions other
than Gaussian approximations. Observers need to learn more than
means and SDs to adapt to the environment, and as we show they
can build ensemble representations with surprising precision.

Supplementary data

The data from the experiments reported in this paper is avail-
able at https://osf.io/3wcth/.
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