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The natural environment is rich with colors. Even sim-
ple objects contain a multitude of hues that depend on 
texture, shape, and reflections from other objects and 
light sources. How are such color ensembles repre-
sented in the brain? Most previous studies have focused 
on the perception of uniformly colored patches or aver-
age impressions of a few colors (Kuriki, 2004; Maule & 
Franklin, 2015, 2016; McDermott, Malkoc, Mulligan, & 
Webster, 2010; Sunaga & Yamashita, 2007; Webster, Kay, 
& Webster, 2014). This is perhaps not surprising since 
common psychophysical methods are well suited to 
provide estimates of single values in perceptual space. 
For example, color matches for average hues within 
ensembles can be measured (e.g., Kuriki, 2004), but 
asking participants to match the colors of whole ensem-
bles is more difficult. How would one reply when asked 
about the color of flowers in a botanical garden? Simple 
labels and single matched colors are unlikely to capture 
the richness of perceptual experience.

We introduce a new method based on intertrial 
learning in visual search that reveals continuous 

representations of colors in multicolored ensembles and 
does not depend on participants’ explicit judgments. 
Following Bayesian models of perception, we consider 
representations as probabilistic models (Ma, 2012; Rao, 
Olshausen, & Lewicki, 2002). When searching for an 
unknown target among distractors, participants form 
representations of targets and distractors in short-term 
memory after a few repetitions, and search becomes 
more efficient (Wang, Kristjánsson, & Nakayama, 2005; 
see reviews in Kristjánsson & Campana, 2010, and Lamy 
& Kristjánsson, 2013). Crucially, target stimuli can be 
used as probes into distractor representations: The 
more likely it is that a distractor has a given feature 
value, the slower search will be when a target is defined 
by this feature (Kristjánsson & Driver, 2008). It is then 
possible to assess distractor representations by varying 
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Abstract
Colors are rarely uniform, yet little is known about how people represent color distributions. We introduce a new 
method for studying color ensembles based on intertrial learning in visual search. Participants looked for an oddly 
colored diamond among diamonds with colors taken from either uniform or Gaussian color distributions. On test trials, 
the targets had various distances in feature space from the mean of the preceding distractor color distribution. Targets 
on test trials therefore served as probes into probabilistic representations of distractor colors. Test-trial response times 
revealed a striking similarity between the physical distribution of colors and their internal representations. The results 
demonstrate that the visual system represents color ensembles in a more detailed way than previously thought, coding 
not only mean and variance but, most surprisingly, the actual shape (uniform or Gaussian) of the distribution of colors 
in the environment.
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target features relative to preceding distractors and 
measuring response time (RT) variations.

Using this approach in previous research, we found 
that participants have surprisingly detailed representa-
tions of ensembles of differently oriented lines, and 
these representations depend on the probability density 
function (PDF) determining the distribution shape 
(Chetverikov, Campana, & Kristjánsson, 2016). Such 
fine-grained representations of feature distributions 
suggest that perceptual mechanisms utilize probabilistic 
inferences. Although probabilistic inferences are some-
times considered universal (e.g., Clark, 2013), orienta-
tion might be a special case, and humans might rely 
more on approximations in other feature domains. We 
used intertrial learning in visual search to investigate 
how color ensembles are represented by human par-
ticipants: whether representations of color ensembles 
involve only mean color and variance or whether finer-
grain statistics, such as distribution probability density, 
are encoded.

Method

Participants

Ten participants (6 female, 4 male; mean age = 32.50 
years) at the University of Iceland took part in a single 
experimental session lasting approximately 45 min, 
after first completing a training session lasting for at 
least 100 trials. All participants signed informed con-
sent, participating voluntarily without monetary reward. 
Sample size and trial numbers were based on the results 
of previous studies (Chetverikov et al., 2016).

Materials and procedure

Participants sat in a darkened room in front of a 24-in. 
Asus (Taipei, Taiwan) VX248H display (1,920- × 1,080-
pixel resolution; viewing distance was 60 cm). The dis-
play was precalibrated using a Cambridge Research 
Systems (Rochester, England) ColorCal MK2 photometer. 
The experiment was run using the Psychophysics Tool-
box (Brainard, 1997) in MATLAB (The MathWorks, 
Natick, MA). Forty-eight isoluminant hues were used 
(luminance: 30 cd/m2, background: x = 0.31, y = 0.34, 
Y = 30.0; all hues were defined in Commission Interna-
tionale de l’Éclairage, CIE, 1931, color space on the basis 
of the values obtained from an isoluminant circle in 
Derrington, Krauskopf, and Lennie, DKL, color space; 
see Fig. 1). Feature space was corrected for inequalities 
in average sensitivity to different colors so that adjacent 
hues were separated by 1 group-averaged just-notice-
able-difference ( JND) unit. Data on average JNDs were 
provided by Christoph Witzel (personal communication, 

November 25, 2015). Witzel and Gegenfurtner (2013, 
2015) found that JNDs for different hues in isoluminant 
DKL color space were relatively consistent between par-
ticipants. For example, for all participants, JNDs were 
higher for greenish hues than for orange ones. Accord-
ingly, information about average JNDs can be used to 
partly correct for anisotropies of color space by dividing 
a color circle into equally discriminable steps. The valid-
ity of this correction has been demonstrated in previous 
studies of color ensembles (Maule & Franklin, 2015, 
2016).

The task was an odd-one-out visual search. Partici-
pants viewed a set of 36 diamonds, each of which had 
one corner cut off, arranged on a jittered grid (Fig. 2); 
on each trial, their task was to find the diamond with a 
hue most unlike all the others (the target) and report, 
using the arrow keys, whether the left, right, top, or 
bottom part of the target diamond was cut off. The 
structure of this task therefore dissociated response rep-
etition from perceptual priming (Maljkovic & Nakayama, 
1994). The experiment consisted of 272 blocks of four 
to six trials each, with alternating learning sequences (3 
or 4 consecutive trials per block) and test sequences (1 
or 2 consecutive trials per block; 1,360 trials per partici-
pant in total). On each trial, stimuli appeared on the 
screen and lasted until the observer’s response. The 
sequence of trials was uninterrupted, and participants 
did not know whether the present trial was a learning 
or a test trial, nor were they explicitly informed about 
the features of the target or distractors. During learning 
sequences, distractor colors were randomly drawn from 
either a uniform distribution with a range of 24 JNDs or 
a Gaussian distribution with a standard deviation equal 
to 6 JNDs, in which outliers with values more than 2 
standard deviations above or below the mean were 
removed, so that on each trial both distributions had 
the same maximal possible range of 24 JNDs (Fig. 2). 
The mean of the distributions was constant within learn-
ing sequences (but not test sequences) and changed 
randomly between all sequences.

Target color was chosen randomly, with the restric-
tion that the distance from the target to the distractors’ 
mean in color space was between 18 and 24 JNDs. The 
means of the distractor distribution were chosen ran-
domly for each learning sequence, and the shape of 
the distribution and its mean were kept constant within 
each learning sequence.

On test trials, target orientation was chosen randomly, 
as was the distractor distribution mean, with the restric-
tion that the target-to-distractor distance ranged from 
18 to 24 JNDs (as during the learning sequences). Test 
trials were used to measure RTs as a function of the 
distance between the target’s color and the mean color 
of the previous distractor distribution (for convenience, 
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we will refer to this as current-target-to-previous-dis-
tractors distance, or CT-PD). To keep difficulty constant, 
we always used a Gaussian distractor distribution with 
a standard deviation of 3 JNDs for the test sequence.

Decision time was unlimited, but participants were 
encouraged to respond as quickly and accurately as 
possible. Feedback based on search time and accuracy 
was presented after each trial to motivate participants. 
The current trial number and the total number of trials 
were shown beneath their score. If participants made 
an error, the word “ERROR” appeared in red letters at 
the center of the display for 1 s.

Data analysis

RTs were log-transformed. Linear mixed-effects regres-
sion was used to analyze repetition effects from the 
mean and shape of the distractor distribution during 
learning sequences. To analyze effects of distractor 
distributions during learning sequences on subsequent 
performance on test trials (in particular, to assess dif-
ferences in the shape of the RT~CT-PD function), we 
used segmented regression (Muggeo, 2008). Following 
the approach we used in previous research (Chetverikov 
et  al., 2016), we excluded both errors (4%) and 
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Fig. 1.  Hues used in the study, arranged in Derrington, Krauskopf, and Lennie (DKL) color space. The col-
ored disks were isoluminant, and adjacent hues were separated by an average of 1 just-noticeable-difference 
(JND) step. The x-axis represents the contrast between L cones and M cones (L – M), roughly corresponding 
to the “red-green” dimension. The y-axis represents the variation in S-cone excitation as L + M activation is 
constant for isoluminant stimuli, roughly corresponding to the “blue-yellow” dimension. Note that because 
of differences in sensory thresholds, colors in some parts of the circle are more distant from each other than 
in other parts, though differences in JNDs remain the same. Color numbers correspond to the scale shown 
in Figure 2.
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posterror responses (5%) from analyses on test trials. 
Posterror responses were excluded because errors may 
lead to abrupt increases in conscious control over task 
performance (posterror slowing), which might mask 
any carryover effects from learning trials. Given the 
results of previous studies, we expected that both uni-
form and Gaussian PDFs could be approximated as 
consisting of two segments. For a uniform distribution, 
the probability of a stimulus with a given value is equal 
within the distribution range and zero elsewhere. So 
if participants can learn the shape of the distractor 
distribution and use it to aid visual search by ignoring 
hues that have higher probabilities of belonging to that 
distribution, the first segment of the RT~CT-PD func-
tion on test trials following a uniform distribution 
should be flat, and the second should have a negative 
slope corresponding to a gradually decreasing prob-
ability of observing a distractor in that position in the 
color space (an abrupt change in the PDF results in a 
gradual decrease in RT~CT-PD; see Chetverikov et al., 
2016). For a Gaussian distribution, the probability 
monotonically decreases within the distribution range 
and is also zero elsewhere. Hence, the first segment 
of the RT~CT-PD function on test trials should have a 
negative slope, while the second segment should be 

flat. An alternative analysis based on model fitting 
instead of segmented regression is provided in the 
Supplemental Material available online.

Results

Performance during learning 
sequences

During learning sequences, search for a target among 
distractors from the uniform distribution was slightly 
more difficult than among distractors from the Gaussian 
distribution, as indexed both by RT (M = 995 ms, SD = 
206 vs. M = 917 ms, SD = 178, respectively), t(9) = 7.77, 
p < .001, and accuracy (M = 0.94 ms, SD = 0.03 vs.  
M = 0.95 ms, SD = 0.03, respectively), t(9) = 2.31, p = 
.046. Search times decreased during the first few repeti-
tions, reaching a plateau approximately after the second 
trial. Accuracy also increased after the first trial (Fig. 3). 
Linear mixed-effects regression with Helmert contrasts 
(comparing RT or accuracy on each trial with the aver-
age on subsequent trials) showed that participants 
responded more slowly, b = 0.15 (0.01), t = 20.71, and 
less accurately, b = −0.35 (0.10), Z = 3.69,1 on the first 
trial than on later trials within a block.
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Fig. 2.  Example of the three types of display used in the experiment (top) with the distributions from where the distractors were 
drawn (bottom). In learning trials, distractor colors were drawn from either (a) a uniform distribution with a mean distractor color of 
24 just-noticeable-difference (JND) steps and a range of 24 JNDs or (b) a Gaussian distribution with a mean distractor color of 24 JNDs 
(SD = 6), with values more than 2 standard deviations above or below the mean removed, which gave this distribution the same range 
as the uniform distribution. In test trials (c), distractor colors were drawn from a Gaussian distribution with a mean distractor color 
of 24 JNDs (SD = 3), again with values more than 2 standard deviations above or below the mean truncated. The mean—the position 
of the distribution on the color wheel—was constant within learning sequences and changed randomly between all sequences and 
within test sequences.

http://journals.sagepub.com/doi/suppl/10.1177/0956797617713787
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Performance during test sequences

Most important, we found that the shape of the distri-
bution during the learning sequence was reflected in 
the shape of the RT~CT-PD function. Figure 4 shows 
that when the distractor distribution during the learn-
ing sequence was uniform, RTs during the test 
sequence were equally slow as long as the target was 
within the range of the preceding distribution, but RTs 
decreased when the target was outside that range. A 
segmented regression confirmed this: Following the 
uniform learning distribution, RTs can be described as 
a two-part linear function with a break point at 9 JNDs 
away from the mean of the learning distribution (95% 
confidence interval, CI = [5.4, 12.6]). The slope of the 
first part did not differ significantly from zero, b = 
3.86, 95% CI = [−5.31, 13.03] (values represent the 
slope and CI for untransformed search times; the 
actual analysis was done using log-transformed RTs 
and yielded similar results), while for the second part, 
the slope was significantly negative, b = −8.84, 95% 
CI = [−12.31, −5.36]. A Davies test comparing a two-
line model that had a break point with a linear model 
that had no break point (Muggeo, 2008) confirmed 
that the difference in slopes for the two parts was 
indeed significant, p < .001.

In contrast, following the learning sequence with a 
Gaussian distractor distribution, RTs during the test 
sequence (a) monotonically decreased with increasing 

CT-PD distance when the target was within the range 
of the preceding distribution but (b) became flat when 
the target fell outside the range of the preceding dis-
tractor distribution. Again, these observations were 
confirmed by segmented regression. Following the 
Gaussian distribution, there was a significant break 
point as well, but this time it was located 17 JNDs away 
from the mean of the learning distribution (95% CI = 
[12.9, 21.4], Davies’s p = .017). In contrast to RTs fol-
lowing a uniform distribution, here the segment before 
the break point had a negative slope (b = −10.08, 95%  
CI = [−13.69, −6.46]), while the second had a flat slope 
(b = 2.73, 95% CI = [−7.40, 12.86]).

In sum, following the uniform distribution, the break 
point showed that participants responded equally 
slowly when target color was within the range of the 
previous distractor distribution, whereas following the 
Gaussian distribution, the break point indicates that 
participants responded equally fast when target color 
was well outside the range of the previous distractor 
distribution. It is, in fact, remarkable how closely the 
RT~CT-PD function follows the actual PDFs for the two 
different learning-sequence distributions (Fig. 4, lower 
panel).

To ensure that the segmented regression result was 
not an artifact of data aggregation, we also fitted indi-
vidual models with break points obtained from a seg-
mented model built on the raw data. We then compared 
slopes before (β0) and after (β1) the break point as a 
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function of the learning-sequence distribution. A repeated 
measures analysis of variance showed a significant inter-
action between slope type (flat vs. negative) and type of 
distribution during the previous sequence, F(1, 9) = 
14.13, p = .004, generalized η2 (η2

G) = .38 for a break 
point at 9 JNDs, and F(1, 9) = 19.29, p = .002, η2

G = .51, 
for a break point at 17 JNDs. In both cases, the slope 
before the break point was shallower following the uni-
form than the Gaussian distribution, while following the 
break point, the opposite was observed (Fig. 5). The 
analyses using different break points for each distribu-
tion (a break point at 9 JNDs for the uniform distribution 
and at 17 JNDs for the Gaussian distribution) yielded the 
same results. Individual t tests further showed that for 
the break point at 9 JNDs, which best fit the raw data, the 
slope of the first segment following the uniform distribu-
tion did indeed not differ from zero, t(9.0) = 1.25, p = 
.243, while the slope of the second segment was negative, 
t(9.0) = −8.37, p < .001. In contrast, following a Gaussian 
distribution, the first of the segments with a break point 
at 17 JNDs was negative, t(9.0) = −6.67, p < .001, while 
the second did not differ from zero, t(9.0) = 0.15, p = .880.

Discussion

Using intertrial learning in visual search, we showed that 
participants can obtain remarkably detailed representa-
tions of color distributions in multihued ensembles of 
distractors after only three to four repetitions. There was 
a striking correspondence between RT curves on test 
trials and the shape of preceding color distributions. RTs 
following exposure to uniform distributions were con-
stant when test targets were within the range of the 
learned distribution. In contrast, following exposure to 
Gaussian distributions, there was a monotonic decrease 
in RTs that paralleled the monotonic decrease in the 
probability density of that distribution (Fig. 4). When the 
target fell within a preceding distractor distribution, RTs 
were slowed because these distributions contained fea-
tures previously associated with distractors (Kristjánsson 
& Driver, 2008). Subjectively, two color distributions 
were very much alike, as Figure 2 demonstrates. The 
subtle difference was nevertheless learned.

Our findings show the validity and usefulness of 
using intertrial learning in visual search to study inter-
nal representations of feature distributions in the envi-
ronment. Along with our previous results (Chetverikov 
et al., 2016), these data show that learning of feature 
distributions occurs for different feature domains. Pro-
cessing of color and orientation in the brain become 
separated at early stages (Zeki & Shipp, 1988), although 
they are not independent (e.g., Clifford, Spehar, Solo-
mon, Martin, & Qasim, 2003). Similar sensitivity to 
learned distributions may suggest that detailed repre-
sentations are ubiquitous in perceptual processing, 
which lends support to empirical theories of vision, 
including Bayesian models and the empirical ranking 
theory (Howe, Lotto, & Purves, 2006; Rao et al., 2002; 
Seriès & Seitz, 2013; Yuille & Kersten, 2006).

Previous studies on color perception have mostly 
used homogeneous patches of colors. Notable excep-
tions are recent studies of averaged colors (Kuriki, 2004; 
Sunaga & Yamashita, 2007; Webster et al., 2014) and of 
color variance (Maule & Franklin, 2015, 2016; Michael, 
de Gardelle, & Summerfield, 2014), which demonstrate 
participants’ ability to estimate average hues. Instead, 
we aimed to understand representations of color distri-
butions. Interestingly, we found no evidence of prefer-
ential encoding of the mean of the uniform distribution 
(no differences in RT were seen for any value—mean 
included—within the range of the learned distribution). 
Participants may not encode mean color specifically but 
rather may compute it later when asked, basing judg-
ments on the represented distribution. Moreover, unlike 
some previous studies (Michael et  al., 2014), this 
research found no priming effect of distribution variance 
or of the shape of the previous distribution per se (see 
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the Supplemental Material). That is, RTs in test sequences 
were not affected by the variance or shape of distractor 
distributions in learning sequences aside from the 
changes in RT curves described in the Results. This may 
indicate different distribution encoding from when par-
ticipants explicitly judge distribution properties.

There is increasing evidence that perceptual systems 
estimate natural statistics when assessing colors. For 
example, many phenomena related to color perception 
(e.g., variation of hue discrimination or contextual influ-
ences on perceived colors) can be explained by statisti-
cal distributions in natural images (Long, Yang, & Purves, 
2006; Yang & Purves, 2004). If human participants utilize 
natural image statistics, they must first learn these sta-
tistics (Lotto, 2004). Our results show that such learning 
occurs rapidly and in surprising detail. Similarly, just as 
uniformly colored patches do not reflect the diversity 
of hues in the real world, illumination is rarely uniform, 
and participants take this into account (e.g., Brainard 
et al., 2006). Knowing the shape of color distributions 
can aid with estimating the illuminant if participants 
know that an object has uniform reflectance. In sum, 
the natural environment is rich with colors, and color 
representations are detailed enough to reflect this.
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Note

1. Wald tests are typically used for binomial regression because 
variance is known; hence we report Z.
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