
The impending demise of the item in
visual search

Johan Hulleman
Division of Neuroscience and Experimental Psychology, School of Biological

Sciences, The University ofManchester,Manchester M13 9PL, United Kingdom.
johan.hulleman@manchester.ac.uk
https://www.research.manchester.ac.uk/portal/johan.hulleman.html

Christian N. L. Olivers
Department of Experimental and Applied Psychology, Institute for Brain &

Behaviour Amsterdam, VU University, 1081 BT Amsterdam, The Netherlands.
c.n.l.olivers@vu.nl
http://www.vupsy.nl/staff-members/christian-olivers/

Abstract: The way the cognitive system scans the visual environment for relevant information – visual search in short – has been a
long-standing central topic in vision science. From its inception as a research topic, and despite a number of promising alternative
perspectives, the study of visual search has been governed by the assumption that a search proceeds on the basis of individual
items (whether processed in parallel or not). This has led to the additional assumptions that shallow search slopes (at most a few tens
of milliseconds per item for target-present trials) are most informative about the underlying process, and that eye movements are an
epiphenomenon that can be safely ignored. We argue that the evidence now overwhelmingly favours an approach that takes fixations,
not individual items, as its central unit. Within fixations, items are processed in parallel, and the functional field of view determines
how many fixations are needed. In this type of theoretical framework, there is a direct connection between target discrimination
difficulty, fixations, and reaction time (RT) measures. It therefore promises a more fundamental understanding of visual search by
offering a unified account of both eye movement and manual response behaviour across the entire range of observed search
efficiency, and provides new directions for research. A high-level conceptual simulation with just one free and four fixed parameters
shows the viability of this approach.
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1. Introduction

Whether we are trying to find a friend amongst disembark-
ing passengers or looking for a street name to establish our
whereabouts, searching for targets is a ubiquitous part of
our lives, and it involves fundamental cognitive mecha-
nisms of perception, attention, and memory. Therefore,
determining how we scan the visual environment for rele-
vant information is a fundamental goal of vision science.

Visual search behaviour has been studied for a long time.
For example, the very first issue of the Quarterly Journal of
Experimental Psychology contained a paper on it (Mack-
worth 1948), and Neisser wrote about finding a face in
the crowd for Scientific American back in 1964. But the
two most seminal years in the field of visual search probably
lie in the 1980s. At the start of that decade, Treisman and
Gelade (1980) published their classic Feature Integration
Theory (FIT). At the end, Wolfe et al. (1989), as well as
Duncan and Humphreys (1989) proposed their very influ-
ential alternatives, Guided Search (GS) and Attentional
Engagement Theory (AET). These contributions made
visual search a burgeoning research area. In fact, they
have been so successful that a recent review of visual
search, published almost 25 years later, still listed FIT,

GS, and AET as the leading theories (Chan & Hayward
2013). However, although these dominant theoretical
frameworks have inspired great advances in the study of
visual attention, in our opinion, further progress is hindered
by what appears to be an implicit yet central assumption,
namely that the primary unit of selection in visual search
is the individual item.
In the lab, the typical search experiment involves a single

known target, which can range from a simple geometrical
shape to a more complex alphanumeric character or an
everyday object. Participants are usually instructed to
determine its presence amongst a varying number of dis-
tractor items, although there are variants of the task in
which the target is always present and observers make a
decision on some orthogonally varied property (e.g., the
identity of a letter inside of a target that is defined by
colour). The effect of the number of distractor items on
RT – the slope of the search function – is an important
measure, because it indicates how efficiently observers
detect the target. Although theories of visual search
broadly recognize that there is a large amount of parallel
processing within the visual field, this has had surprisingly
little impact on what has been assumed to be the core
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process, namely the selection of individual items that are
either rejected as distractors or recognized as a target.
There are a number of promising alternative perspectives
that ground the search process in eye fixations rather
than covert selections of individual items. We argue that
these approaches, when unified, provide a more compre-
hensive framework for explaining the oculomotor and
manual response dimensions of visual search behaviour.
The goal of this paper is to provide this unification.

2. Setting the stage: Feature Integration Theory
and its assumptions

FIT was never intended as a theory of visual search pro-
per, but rather used the visual search paradigm to test
its predictions about the way early sensory processing
produces object representations. Nevertheless, it is diffi-
cult to overestimate its influence on the formulation of
the visual search problem. The fundamental distinction
between search with flat slopes, where the time taken to
find the target is independent of the number of distractors
(e.g., / amongst |), and search with steeper slopes, where
search time increases with set size (e.g., red / amongst
green / and red |), had been made before (e.g., Jonides &
Gleitman 1972). But Treisman and Gelade’s (1980) FIT
provided an attractive explanation. In its original version,
visual features (e.g., colour, orientation, motion) are pre-
attentively registered in parallel in separate feature maps.
So, whenever the target differs from the distractors by a
single feature (e.g., red amongst green), search time is
independent of set size. Target presence is simply estab-
lished by inspecting activity in the relevant feature map.
Identifying a target that is a conjunction of features (e.g.,
red | amongst green | and red /), however, requires serially
applied attention to bind the features together, using a
map that contains the item locations. Consequently, when-
ever the target is defined by a combination of features,
RTs increase with set size. Thus, FIT explained the quan-
titative difference between single feature and conjunc-
tion search slopes as a qualitative difference between
parallel, “map”-based search and serial, “item”-based

search. As we will see later, this qualitative distinction
prompted an enduring empirical focus on the shallower
end of the search slope spectrum as the most informative
about the fundamental mechanisms of visual search.
After all, somewhere between 0 ms/item and around 25
ms/item (for target-present trials) the transition to item
search occurs. Consequently, search beyond this range
has been considered to have little additional theoretical
value.
FIT opened up an abundance of research questions. It

predicted binding errors, where features are combined
incorrectly (e.g., Treisman & Schmidt 1982). It also
inspired a taxonomy of basic features, by providing the
diagnostic of flat search slopes (see Wolfe & Horowitz
2004, for an overview). And importantly, because of its fun-
damental distinction between parallel feature search and
serial conjunction search, FIT encouraged other research-
ers to challenge the core of the theory by finding conjunc-
tions of features that nevertheless yielded flat search slopes.
Success in this endeavour (e.g., Nakayama & Silverman
1986; McLeod et al. 1988; Wolfe et al. 1989) gave rise to
new models (Duncan & Humphreys 1989; Wolfe et al.
1989) and to adaptations of FIT (Treisman & Sato 1990;
Treisman 1991).

3. Popular alternative theories: Guided Search,
Attentional Engagement Theory, and Signal
Detection approaches

3.1. Guided Search

Guided Search, the hitherto most successful model, was
conceived to challenge FIT’s fundamental distinction
between parallel feature and serial conjunction search.
Wolfe et al. (1989) adapted FIT such that information
from the feature maps guides attention towards conjunc-
tions as well. Across several updates (Wolfe 1994; 2007;
Wolfe & Gancarz 1996) the basic principle has remained
unchanged: Guided Search combines signals from different
feature maps into a single activation map via broadly
tuned (“categorical”) channels (e.g., “red,” “green,” “verti-
cal,” “horizontal”). The activation map holds the locations
of the individual items, and attention is guided towards
the location with the highest activation. If it contains
the target, a target-present response follows. However,
because of inherent noise, it may contain a distractor. In
that case, attention is guided to the location with the
next-highest activation. This continues until the target is
found or search is terminated with a target-absent
response.
Top-down weighting or filtering of the channels

improves search efficiency. For example, for a green-hori-
zontal target and distractors that are red-horizontal and
green-vertical, output from the green and horizontal chan-
nels is selected. Because the target receives activation from
two channels, while distractors receive enhancement from
only one, attention can be more efficiently guided towards
conjunction targets, allowing for relatively flat search
slopes. Furthermore, top-down weighing of specific fea-
tures explains why people often search through or ignore
subsets of items (e.g., Kaptein et al. 1995; Watson & Hum-
phreys 1997). Accordingly, there is no fundamental distinc-
tion between feature search and conjunction search,
making both essentially item-based.
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The latest version of Guided Search (4.0; Wolfe 2007)
differs from its best-known predecessor Guided Search
2.0 (Wolfe 1994) in the way individual items are selected.
In version 2.0, items were selected and processed individ-
ually in a purely serial fashion at a rate of 50 ms per item.
In version 4.0, items are also selected individually and at
a similar rate (20–40 ms per item), but they now enter a
processing stream that itself takes between 150–300 ms
to establish whether an individual item is the target. This
component was added to account for findings from atten-
tional dwell time studies, which suggest that items need
this amount of time to be processed (Duncan et al. 1994;
Theeuwes et al. 2004). The stream has a capacity of four
items. Guided Search 4.0 is therefore no longer a purely
serial model, but a serial–parallel hybrid, and is often
referred to as the car wash model. Yet, even in version
4.0, the individual item remains at the heart of the search
process. Although multiple potential targets are processed
simultaneously, these candidates are still delivered one-
by-one to the car wash. And despite the disavowal of the
qualitative distinction between flat and steeper search
slopes, the shallow end of the search slope spectrum con-
tinues its important theoretical role, because that is
where visual properties that support top-down guidance
are separated from those that do not, allowing conferral
of the theoretically important concept of “feature status”
on the former.

3.2. Attentional Engagement Theory

Another challenge to FIT came from Duncan and Hum-
phreys (1989), who also criticized the dichotomy between
parallel and serial search, but on different grounds. In
what later was called AET (Duncan & Humphreys 1992),
they proposed a continuous search surface, where the com-
bination of target–distractor and distractor–distractor simi-
larity determines a range of search slopes. When distractors
resemble the target, search times increase. When all dis-
tractors resemble each other, search times decrease.
Hence, search must take the relationship between multiple
items into account, rather than just the identity of single
items.

It is fair to say that Duncan and Humphreys never envis-
aged a theory purely based on individual items. Instead,
they proposed that search operates on “structural units” –
segments in a hierarchically organized representation of
the visual input that may be defined at various levels
(from individual items to scene structures – see also
Nakayama & Martini 2011). These structural units
compete for access to visual short term working memory
(VSTM). The better the match with the target template,
the higher the probability that a structural unit enters
VSTM; the better the match with a distractor template,
the lower this probability becomes. Changes in the selec-
tion probability of a structural unit spread in parallel to
similar structural units throughout the display.

Yet, although AET was set up as a theory about structural
units, its subsequent application to visual search has essen-
tially been item-based. As Duncan and Humphreys (1989,
p. 446) state: “In an artificial search display it may seem rea-
sonable to limit consideration to the few stimulus elements
that are presented by the experimenter, but in a realistic,
natural image the problem is more complex.” In their
account of visual search data, they continue: “[T]here is

the problem of classifying each single element in a
display as target or non-target. In [AET] this involves
matching each element against a template of possible
targets” (p. 447). An item-based approach is also notable
in SERR (Humphreys & Müller 1993), a computational
implementation of AET. Here, the individual identity of
items (e.g., a particularly oriented T or L) is compared
against templates specifying the identity of individual
targets and distractors, although items can be strongly
grouped if they are of the same identity. So a T is rapidly
detected among Ls because the grouped Ls provide
strong evidence for the presence of an L and will cause a
match with the L-template. This is then followed by inhibi-
tion of all Ls, applied via their individual locations, leaving
the T as the last uninhibited item. Consequently, the group
process is still based on the identities and locations of indi-
vidual items. Furthermore, the associated empirical work
focused on relatively shallow search slopes. Of course, in
principle, AET can be applied to structural units other
than individual items or to more difficult search. So far,
however, AET has not been extended beyond easier,
item-based search.

3.3. Approaches based on Signal Detection Theory (SDT)

SDT approaches to visual search (e.g., Eckstein et al. 2000;
Palmer et al. 2000; Verghese 2001) form a different class of
theory and are explicitly formulated as a rejection of the
two-stage architectures of FIT and Guided Search.
Instead, SDT approaches assume a single, parallel stage
during which the target and distractor items evoke noisy
individual internal representations, with the target’s repre-
sentation scoring higher along the relevant feature dimen-
sion. Importantly, because of neural noise, there will be an
overlap in the distribution of these individual internal rep-
resentations. The more similar target and distractors are,
the larger this overlap. Target-absent and target-present
responses are based on a decision rule. A popular choice
is the MAX-rule, where the decision is based on the
single item with the largest feature score. The larger the
number of distractors, the higher the probability that one
of them evokes an internal representation that is target-
like. Therefore, evidence for target presence decreases
with set size.
Their fundamental opposition to FIT and Guided Search

notwithstanding, SDT approaches so far have shared their
item-based nature. Even though displays are processed in
parallel, decisions are still based on the internal representa-
tions evoked by individual items. Moreover, in conjunction
searches, the location of the individual items is used to
combine the representations on different feature dimen-
sions. Finally, as the main aim of SDT theories was to
provide an alternative explanation for flat versus steeper
slopes, they too have focused on the shallow end of the
search spectrum.

4. The problem: Why items as the conceptual unit
hinder more than help in understanding visual
search

We hold that the focus on the item as the core unit of visual
search is rather problematic for a number of reasons.
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4.1. It ignores other ways of doing visual search

Item-based approaches limit the real-world applicability of
results from the lab. In that sense, the adoption of the
item as conceptual unit may have had an effect on the
type of stimuli used as well: Item-based models make
item-based predictions that are tested with item-based dis-
plays. Yet, although radiologists and security-screeners
undoubtedly perform visual search tasks, it is not immedi-
ately clear howmany “items”mammograms or airport secur-
ity X-rays contain. Neider and Zelinsky (2008) argued
convincingly that it is impossible to objectively define set
size in real-world scenes. Similarly, using the individual
item as conceptual unit requires a distinction between
texture displays (with many items, or all items forming a
coherent surface) and search displays (with fewer items).
Although Wolfe (1992) reported a dissociation between
groups of stimuli that allow texture segmentation and indi-
vidual items that allow efficient search, it remains unclear
how many items are needed before a search display
becomes a texture. We are not saying that proponents of
item-based models ignore real world searches. On the con-
trary, the two main authors of the original Guided Search
model, for example, regularly publish admirable work on
search in real world scenes (Võ & Wolfe 2012; Wolfe et al.
2011b), medical imaging (Donnelly et al. 2006; Drew et al.
2013a; 2013b; Evans et al. 2013a), and luggage-screening
(Godwin et al. 2010; Menneer et al. 2007; Wolfe et al.
2005; 2013). However, as Wolfe et al. (2011b) pointed out,
classic item-based models generally fail under these circum-
stances. To account for scene-based search, yet also preserve
the item-based structure of Guided Search, Wolfe (2007;
Wolfe et al. 2011b) assumes a pathway for scene processing
that is separate from item-based processing.
Conceptualizing search as being based on selecting indi-

vidual items limits thinking about alternative ways to com-
plete the task. The item as conceptual unit has made it
tempting to view search as a process where items are com-
pared against a template specifying the individual target
item (e.g., Bundesen et al. 2005; Humphreys & Müller
1993; Wolfe 1994; Zelinsky 2008) and possibly also other
types of target-defining information. This item-based tem-
plate-matching then provides an underlying rationale for
reporting visual search experiments in terms of RTs as a
function of set size, where the slope measures the addi-
tional cost of having to compare an extra item to the tem-
plate. However, item-based approaches encounter the
problem that search slope estimates of individual item pro-
cessing (typically 25–50 ms/item) are much lower than esti-
mates of attentional dwell time from other paradigms,
which have reported item-processing times of 200–300
ms (Duncan et al. 1994; Theeuwes et al. 2004). This is
why Moore and Wolfe (2001) proposed the car wash
model: Search slopes measure the rate at which individual
items are entered into a processing stream, rather than pro-
cessing duration itself, in the same way that the time
between two cars entering a car wash can be shorter than
the time it takes to wash an individual car. But this model
is only necessary if one conceptualizes visual search as the
problem of linking one item-based process (a fast serial
search of 20 to 40 items per second) to another (a slow bot-
tleneck of about 4 items per second).
In many visual search experiments though, the task is to

decide whether the display contains a target – not whether

any specific item is a target or a distractor. Conceptualizing
the search process as a sequence of item-based present/
absent decisions is potentially misleading, because check-
ing whether a particular item is the target is not the only
way to complete the task. For instance, looking for a differ-
ence signal between the target and its surrounding distrac-
tors might work too. This possibility was first recognized for
simple feature searches, where “singleton detection mode”
(search for any difference) has been distinguished from
“feature search mode” (search for a specific feature;
Bacon & Egeth 1994; or feature relationship, Becker
2010). Another promising alternative formulation was
given by Rosenholtz et al. (2012a), who proposed that
observers decide whether a particular fixated patch of the
search display contains the target on the basis of pooled
summary statistics computed across that patch. Evidence
against single item approaches comes from a computational
model of Najemnik and Geisler (2008). They argued that
human eye movement patterns during visual search are
better explained by a model that fixates areas of the
screen that maximize information about target-presence,
than by a model that fixates the item most likely to be the
target (see also Young & Hulleman 2013). Likewise,
Pomplun and colleagues (Pomplun et al. 2003; Pomplun
2007) reported that fixation patterns not only depend on
the presence of particular relevant or irrelevant features,
but also on the specific local ratios and spatial lay-outs of
these features – that is, local statistics. They too found fixa-
tions often to be off-items. This behaviour was successfully
captured in a model that assumes area activation rather
than individual item activation. Thus, decisions about
target-presence could very well be framed at the level of
group-statistics of items, rather than at the level of individ-
ual items. Item-by-item search may actually be the excep-
tion. When search does proceed item-by-item, as
demonstrated by fixations on each individual object, perfor-
mance becomes very poor (Hulleman 2010; Young &
Hulleman 2013), with extremely steep search slopes and
miss rates exceeding 20%. Performance in standard labora-
tory tasks is typically much better, suggesting less effort is
involved than predicted by item-based theories. The idea
of items processed in spatial clusters is not new. Pashler
(1987) already proposed search through clumps of items,
and arrived at a fixed clump size of 8 items, with 75 ms
for every between-clump switch, and a ±15 ms/item slope
for within-clump search, although he also argued that it
may vary with different types of a search.
One might argue that not all search tasks can be based on

global statistics because some really do require the individ-
ual item. For example, tasks may involve a response to the
precise location of the target, or to a relatively difficult to
distinguish property that is varied orthogonally to the
target-defining feature. This latter type of task is often
known as compound search (Duncan 1985), and may
partly involve processes that differ from a present/absent
task (e.g., Olivers & Meeter 2006). However, the fact
that the individual target item is required at the end does
not mean that the preceding search process is also item-
based. Search could be conceived as consisting of multiple
steps where statistical signals are used to select the rough
area containing the target, more precise signals are then
used to exactly locate it, finally followed by even more
precise extraction of the response feature. The first steps
are likely to be very similar across search tasks, while the
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later steps are likely to differ depending on what exactly is
required from the target (see Töllner et al. 2012b, for direct
evidence).

4.2. It overestimates the role of individual item locations

A main reason why individual items play such an important
role in visual search theories is that their locations are nec-
essary for effective feature binding (in FIT, but also in Eck-
stein et al. 2000; Itti & Koch 2000; and Wolfe 2007), or for
collecting the features used in guiding attention and tem-
plate-matching. Moreover, individual item locations are
needed to inhibit previously inspected distractors. Yet,
visual search is very robust against substantial displacement
of items, at least for present/absent tasks. Horowitz and
Wolfe (1998) reported largely intact search performance
when items are randomly shuffled around the display
every 100 ms. Furthermore, Hulleman (2009; 2010)
reported that search for a moving T amongst moving Ls
remained comparable to search in static displays, even
when dozens of items were moving smoothly in random
directions at velocities of up to 10.8 deg/s (and tracking of
all individual items is virtually impossible; Pylyshyn &
Storm 1988). Even occupying observers with an additional
working memory task hardly affects search through such
random motion displays (Hulleman & Olivers 2014).
These results suggest that the exact location of individual
items is less important than previously assumed by item-
based accounts. Instead, they support the idea that
present/absent decisions are based on parallel extraction
of properties of groups of items within local areas; proper-
ties that are holistic or statistical in nature. An example is
the pooling approach of Rosenholtz et al. (2012a) men-
tioned earlier. Here, summary statistics (for relative orien-
tation, relative phase, correlations across scale, etc.) are
computed across a patch of the search display. This
means that the locations of individual items inside the
patch are inherently less important than the location of
the patch in the display. Item motion ceases to be a
special case because individual location information is
also discarded for static items. Finally, note that a pooling
approach is less taxing on memory: no memory for individ-
ual items is needed, only for inspected areas.

4.3. It ignores a really difficult search

The influence of FIT’s distinction between parallel feature-
based search and serial item-based search has resulted in an
unwarranted emphasis on the shallow end of the search
slope spectrum. For example, in Wolfe’s (1998b) analysis
of more than 1 million search trials, 90% of the target-
present slopes were below 40 ms/item. We suspect that
more difficult search tasks are used only sparingly
because of the FIT-derived idea that search becomes
completely item-by-item once you have crossed the 25
ms/item barrier (T vs L; 2 vs 5; as most explicitly stated
by Wolfe 2007). Once this item-by-item stage has been
reached, there is little extra theoretical insight to be
gained from even slower search, because any additional
slowing cannot be due to the core search process.

Furthermore, it appears that slope differences at the
shallow end are still given a qualitative interpretation;
they are seen as diagnostic for visual properties that
support top-down guidance and thus have “feature

status.” For example, Wolfe (2007, p. 106) writes that a T
is easily discriminable from an L, just like a \ is easily dis-
criminable from |. Yet search for T is inefficient (25–50
ms/item), and search for \ is parallel (0–10 ms/item).
Thus, within the Guided Search framework, the conclusion
is that orientation guides attention, while T or L junctions
do not, and therefore that somewhere between 10 and
25 ms/item there is an important transition. Note further
that Guided Search thus explicitly dissociates discriminabil-
ity from feature guidance (cf. Beck 1972; Beck & Ambler
1973): An easily discriminable visual property is not neces-
sarily a guiding property. This is counterintuitive because
one would expect that the visual system will use properties
that it finds easily discriminable.
The focus on the shallow end of the search slope spec-

trum has led to an explanatory gap at the steep end. For
example, search for T amongst Ls is considered a prototyp-
ical example of a task where differences between target and
distractor are at an absolute minimum. Both consist of the
same two lines and only the relative position of these lines
determines whether an item is a target or a distractor. The
associated slope values of 25 ms/item and 50 ms/item
(target-present and target-absent, respectively) should
therefore constitute an upper limit for the steepness of
search slopes. However, Wolfe (1998b) reported searches
with slopes much steeper than 25–50 ms/item, even up to
100–250 ms/item. This makes additional hypotheses neces-
sary. For example, very slow search may be due to hard to
discriminate objects (perhaps requiring serial extraction of
features within an item, thus slowing down the car wash),
or due to eye movements. Such discriminability and eye
movement influences may indeed be fundamental to hard
search, but, as we will argue later, the same factors may
in fact explain all search slopes. That is, there is no need
for additional hypotheses to explain steep slopes, but for
a single hypothesis that explains all slopes.
The explanatory gap becomes even wider if one consid-

ers that if a slope distinction that suggests qualitative differ-
ences actually exists, it appears to occur at the high end of
the slope spectrum, at values of around 100 ms/item or
more. Up to a few tens of milliseconds per item, search is
quite robust against item motion, but very slow search (of
140 ms/item) breaks down when items move (Hulleman
2009; 2010; Young & Hulleman 2013). In contrast, very
slow search is robust in gaze-contingent displays where
only the fixated item is unmasked, whereas easy to moder-
ate search becomes much slower and more error-prone
when the number of unmasked items is reduced (Young
& Hulleman 2013). Easier and very hard search also
differs in terms of RT distributions. Young and Hulleman
(2013) found that for easy (0 ms/item) and intermediate
search (±20 ms/item target-present), the standard devia-
tion of the RTs was larger for target-absent trials than for
target-present trials (see also the searches of up to about
40 ms/item for target-present in Wolfe et al. 2010a). On
the other hand, the pattern is reversed for hard search
(±140 ms/item target-present): Here, the standard devia-
tion of the RTs is largest for target-present trials (Young
& Hulleman 2013). Later we will explain what we believe
to be the origin of this differential robustness to motion,
differential robustness to visible area size and reversal in
variability in RTs. The point for now is that the emphasis
on the differences at the shallow end of the search slope
spectrum has resulted in an underappreciation of the

Hulleman & Olivers: The impending demise of the item in visual search

BEHAVIORAL AND BRAIN SCIENCES, 40 (2017) 5
https://doi.org/10.1017/S0140525X16000133
Downloaded from https://www.cambridge.org/core. University of Florida, on 04 Aug 2017 at 14:24:15, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0140525X16000133
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


similarities between searches at that end, as well as their
differences with searches at the steep end.

4.4. It ignores the eye

Understandably, when trying to explain the difference
between feature search and conjunction search, or
between guided search and unguided search, researchers
have had to control for eye movements as a possible con-
found. In this sense, eye movements have traditionally
been considered a nuisance phenomenon, rather than a
crucial component of the search process. Although Treis-
man and Gelade (1980) acknowledged the role serial fixa-
tions may play in search performance, Treisman (1982)
claimed that “serial search […] is centrally rather than
peripherally determined; it represents successive fixations
of attention rather than eye movements” (p. 205–206),
and later iterations of FIT (e.g., Treisman & Sato 1990;
Treisman 1991) no longer mention eye movements.
Pashler (1987), when discussing the possibility that items
are processed in clumps rather than individually, decided
that this was “not due to eye movements, in any interesting
sense” (p. 200). Wolfe (1998a) shared this view: “While
interesting, eye movements are probably not the determin-
ing factor in visual searches of the sort discussed in this
review – those with relatively large items spaced fairly
widely to limit peripheral crowding effects” (p. 14). Simi-
larly, the AET and SDT approaches also did not account
for eye movements. Even though these opinions were
expressed decades ago, they continue to reflect mainstream
thinking in the field.
Many models of search (e.g., Itti & Koch 2000; Wolfe

2007) have equated eye movements with covert shifts of
attention, in the sense that overt shifts, when executed,
simply follow the covert shifts. Stated the other way
around, covert visual search is like overt visual search, but
without the eye movements. The fact that search can
proceed without eye movements is used as an argument
that search is de facto independent of eye movements
(see Carrasco 2011, and Eimer 2015, for more recent
iterations of this view). This does not mean that these
researchers deny that eye movements exist – or influence
search – rather, they do not assign eye movements a
central, explanatory role in modelling search behaviour.
The equating of overt to covert shifts is convenient, as it
allows eye movements to be disregarded. Visual search
becomes a homogeneous sequence of shifts of attention,
with the entire display at its disposal, rather than an amal-
gamation of different viewing episodes, each with their own
start and end point, and each with their own spatial distri-
bution of information. As support, Wolfe (2007) cites
studies showing that, with appropriately scaled items,
search with and without eye movements is comparable
(Klein & Farrell 1989; Zelinsky & Sheinberg 1997). Yet,
because covert shifts are assumed to operate at a faster
pace than overt shifts, additional assumptions are needed
(Itti & Koch 2000; Wolfe 2007). As Wolfe (2007, p. 107)
states, “the essential seriality of eye movements can point
toward the need for a serial selection stage in guided
search.”
We agree that search can occur without eye movements

(if the display allows), and that attention can be directed
covertly – something we will return to in the General
Discussion. However, there are also clear differences

between eye movements and covert attentional shifts.
The latter are limited by the physiology of the retina,
whereas the former are used to surmount those limitations.
Emphasising the similarity between eye movements and
covert shifts of attention by suggesting that, with appropri-
ately scaled items, searches with and without eye move-
ments yield similar results, ignores the reverse argument,
namely that this similarity might not hold in most other sit-
uations, where items are typically not appropriately scaled.
Under free viewing conditions there is a strong positive cor-
relation between number of fixations and both task diffi-
culty and RT (e.g., Binello et al. 1995; Motter & Belky
1998a; Young & Hulleman 2013; Zelinsky & Sheinberg
1995; 1997). Moreover, even when search could proceed
without eye movements, participants still prefer to make
them (Findlay & Gilchrist 1998; Zelinsky & Sheinberg
1997). The dominant models of search so far do not
account for this fact, because they start from the position
that successful search can occur without eye movements.
As argued by others (Eckstein 2011; Findlay & Gilchrist

1998; 2001; 2005; Pomplun 2007; Rao et al. 2002; Zelinsky
1996; 2008), the findings listed above suggest that eye
movements are a fundamental part of visual search, and
that any model without them is necessarily incomplete.
We believe that not accounting for eye movements is not
simply an omission or a matter of taste, but the logical con-
sequence of adopting the individual item as the conceptual
unit in visual search, with further consequences for visual
search theory. For example, when eye movements are in
principle unnecessary, and simply interchangeable with
covert shifts of attention, the increase in number of fixa-
tions with increasing search difficulty becomes an epiphe-
nomenon, necessitating the formulation of additional
hypotheses – for example, feature binding, differential
guidance, or differential attentional dwell times. As we
will argue instead, it is more straightforward to assume
that search RTs are directly related to the number of fixa-
tions. Then all that needs explaining is why some searches
yield more fixations than others.
Taking eye movements into account requires acknowl-

edging why they are needed to begin with. Consequently,
the assumption that the entire search display is processed
with the same detail no longer holds (Eckstein 2011).
This assumption has been crucial to one of the main argu-
ments for item-based feature binding accounts, namely that
distinctions made equally easily in foveal vision (T vs. L, /
vs. |, 2 vs. 5) yield very dissimilar search slopes (e.g.,
Wolfe & Horowitz 2004; Wolfe 2007). In other words,
the argument here is that perfectly discriminable items
nevertheless do not guide attention but instead lead to
serial search – hence, feature binding implies item-based
processing. However, this ignores the differential drop-
off in identification rate for these stimuli across the retina
(e.g., He et al. 1996). Whenever a search display cannot
be foveated in its entirety, the relevant question becomes
how far into the periphery target detections are possible.
The further into the periphery such detections can be
made, the fewer eye movements are needed, and the
faster search will be. Clear eccentricity effects on visual
search RTs have been reported (e.g., Carrasco et al.
1995; Motter & Belky 1998b; Scialfa & Joffe 1998). But
retinal resolution also affects eye movements themselves.
Young and Hulleman (2013) showed that the distance
between fixation location and nearest item depends on
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task difficulty. The easier the discrimination between target
and distractor, the larger this distance was, and the fewer
fixations were made.

We already referred to a number of very promising
models that have taken the eye (either its movement or
its retinal resolution) into account (Geisler & Chou 1995;
Najemnik & Geisler 2008; Pomplun 2007; Pomplun et al.
2003; Rosenholtz et al. 2012a). Perhaps the most important
model in this respect is TAM (Target Acquisition Model;
Zelinsky 2008; Zelinsky et al. 2013). TAM is a pixel-based
approach that was explicitly developed to model eye move-
ments, rather than RTs. It has been very successful in
explaining eye movement patterns in visual search, includ-
ing fixation of empty regions to maximize population based
information (Zelinsky 2012; Zelinsky et al. 2013). However,
until now, all of these models have been models of fixations.
They do not model slopes of manual RT functions or RT
distributions, although it should not be too difficult to
extend them and accommodate those measures (see Zelin-
sky & Sheinberg 1995 for an early proposal). Furthermore,
in contrast to item-based models, fixation-based models
have often focused on the difficult end of the search
spectrum, using displays with targets that are very similar
to the background or distractors, This is probably no coin-
cidence, because it is these types of searches that are guar-
anteed to generate eye movements. In the next section,
we will present a general framework intended as a bridge
between eye movements and manual responses in search,
across a range of search difficulties.

5. The solution: Towards fixation-based, rather
than item-based search

So far, the main quest of visual search theories has been to
account for the more central perceptual limitations affect-
ing the search process, from feature binding to top-down
guidance, from covert selection to inhibition of items,
and from staggered serial (car wash) processes to post-
selection bottlenecks. These limitations have been
expressed as limitations of selecting and processing individ-
ual items. We agree that such central limitations on visual
selection are important. However, the evidence reviewed
suggests that the emphasis on individual items is becoming
counterproductive, because (1) it obscures other theoreti-
cal possibilities that may be at least equally likely (e.g.,
using population-based signals), (2) it ignores earlier influ-
ences on the visual selection process that, because of
ingrained physiological and other processing limitations,
can be expected to have at least as profound an influence
on visual selection as any central limitations, and (3) it
has focused the research effort on easier search tasks to
the detriment of further theoretical gains that harder
search tasks could provide.

We believe that all components are in place for an over-
arching framework of visual search. One strand of the liter-
ature has provided models for RTs, while another strand
has provided models for fixation behaviour. Although
there have been fruitful attempts to link them (Geisler &
Chou 1995; Zelinsky & Sheinberg 1995), these two
strands appear to have grown further apart since. Making
a link is not just a matter of combining the two strands.
One type of model denies a pivotal explanatory role for
eye movements in search, while the other type considers

them crucial. Thus, any overarching conceptual framework
will require a fundamental, principled choice. We choose a
framework that favours fixations, rather than individual
items, as the conceptual unit of visual search. This has
several advantages: Adopting fixations as the conceptual
unit allows all kinds of displays into the visual search fold,
including real world scenes and X-rays, rather than only
those with clearly defined items. It also obviates the distinc-
tion between textures and search displays. A corollary of
emphasizing the role of fixations in visual search is that
retinal physiology becomes more important. This seems
appropriate, because themaximumdistance into the periph-
ery where targets can be detected appears to be a major
determiner of search times. Finally, a fixation-based frame-
work allows for a much wider range of search slopes to be
encompassed than the 0–50 ms/item onwhich the literature
has typically focused. At the same time, adopting fixations as
the unit of visual search does not negate the possibility of
covert shifts of attention – something to which we will
return in the General Discussion.

5.1. Functional Viewing Field

Central to the proposed framework is the Functional
Viewing Field. As others have pointed out (see Eckstein
2011 for a review), retinal constraints are not the only
limits on peripheral vision: Competition between represen-
tations occurs at many levels beyond the retina. For
example, there are limits on attentional selection beyond
that expected on the basis of visual acuity (Intriligator &
Cavanagh 2001). There are also well-known effects of
crowding and masking, where a stimulus – including
simple features – that is perfectly recognizable on its own
severely suffers when surrounded by other stimuli
(Bouma 1970; Levi 2008; Neri and Levi 2006; Pelli et al.
2004; Põder 2008; Põder & Wagemans 2007). Even
when limits to retinal and attentional resolution are taken
into account, there remains a general bias to attend more
to central items (Wolfe et al. 1998). Wolfe et al. (1998)
argued that attention may follow the physiological con-
straints, such that areas of the retina that deliver the most
information (i.e., the fovea) receive most attention. There-
fore, observers may not always make eye movements out of
bare necessity, but also out of efficiency or convenience.
Furthermore, Belopolsky and Theeuwes (2010) have
argued for a flexible “attentional window.” They reasoned
that very easy search allows for a broad, more peripheral
window, whereas hard search calls for a narrower, more
foveal window.
The combination of peripheral constraints on perceptual

and attentional resolution creates what has since the 1970s
become known as the functional viewing field, FVF
(Sanders 1970), the area of visual conspicuity (Engel
1971), visual span (Jacobs 1986; O’Regan et al. 1983), or
useful field of view, UFOV (Ball et al. 1988). We will use
FVF here and define it as the area of the visual field
around fixation from which a signal can be expected to be
detected given sensory and attentional constraints. Impor-
tantly, the FVF is not fixed but changes with the discriminabil-
ity of the target. The less discriminable the target, the smaller
the FVF, and the more fixations are needed to find the target.
Hence, targets that are difficult to discriminate lead to longer
search times. This even holds for search without eye move-
ments, because targets that are less distinguishable from
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distractors will suffer relatively more from additional dis-
tractors, especially in the periphery where discriminability
will be lowest.
Direct support for the idea that FVF size distinguishes

easy from hard searches comes from Young and Hulleman
(2013), who masked peripheral information in a gaze-
contingent design. The size of the unmasked region
around fixation was varied from relatively large (about 10
degrees radius), to medium (about 5 degrees radius), to
small (about 2.5 degrees radius). Easy search for a diagonal
bar amongst vertical bars became much slower and more
error-prone when the size of the visible area was
reduced, consistent with the idea that it normally benefits
from a large FVF. However, very hard search for a specific
configuration of squares hardly suffered at all, even when
the visible area was reduced to 2.5 degrees radius – consis-
tent with the idea that for this type of search the FVF was
already small to begin with (see Fig. 1 for examples of the
easy, medium and hard task used in Young & Hulleman
2013, together with the estimated FVF).

We stress that the idea that the FVF affects visual search
is not new. Engel (1977), as well as Geisler and Chou
(1995), already showed strong correlations between FVF,

eye movements and overall RTs (although they did not
assess RT slopes and variability). Ball et al. (1988) reported
effects of age-related changes in FVF on visual search. In
his reviews of 1998b and 2003, Wolfe acknowledged the
FVF as an alternative way of conceptualizing visual
search. Findlay and Gilchrist (1998) also mentioned the
FVF as a likely contributing factor to target salience. Nev-
ertheless, somehow the FVF has yet to acquire a firm foot-
hold in mainstream theories of visual search and their
computational implementations. We will demonstrate
here that the FVF can be considered central to explaining
search behaviour, be it eye movements or manual
responses. It is not some side effect that at best modulates
search but under most circumstances can be safely ignored.

5.2. A simple conceptual framework

As proof of principle we present a simulation of a fixation-
based conceptual framework. We deliberately opted for a
high-level implementation with only five parameters (four
of them fixed), to allow an emphasis on the crucial role
that the size of the FVF plays in explaining search slopes
and the distributions of both RTs and number of fixations.
Thus, the implementation is formulated at a computational
level (what are the outcomes) rather than at an algorithmic
level (what are the mechanisms; cf. Marr 1982). Specific
mechanisms that do not rely on individual items and non-
crucial parameters (such as guessing rates and reaction
time constants) will need filling in by more detailed algo-
rithms. In fact, some of the details have already been spec-
ified in more mechanistic models. What we aim to show
here is that connecting the dots leads to a promising over-
arching theoretical framework.

1. A functional visual field. The main assumption of the
framework is an FVF. Its size varies with target discrimina-
bility. The more difficult the distinction, the less far into the
periphery it can be made (Smith & Egeth 1966). For
example, the FVF for diagonal amongst vertical is larger
than for T among L (e.g., Rosenholtz et al. 2012a). As a con-
sequence, fewer fixations will be needed to cover the search
display. In our current simulation we have adopted the
number of items comprehended at once (c.f. the clumps
in Pashler 1987; and the variable number model in Zelinsky
& Sheinberg 1995) as a proxy FVF size, although it is prop-
erly expressed in terms of visual angle (see Young & Hulle-
man 2013 for estimates). One may find it odd that we
propose an alternative to item-based accounts that is in
itself based on items, rather than on a spatial field of view.
However, as Figure 1 illustrates, for displays that consist –
after all – of items, a spatially limited array of a particular
size directly corresponds to a particular number of items.
Thus, while using the number of items is a rather crude
approximation, it suffices for our current purpose, the sim-
ulation of FVFs of different sizes. In our simulation, we
assume that the FVF always contains at least one item
(the minimum). The maximum it can contain depends on
target discriminability. For very easy (“pop out”) search,
we assume a maximum of 30 for our displays. For search
of intermediate difficulty, the maximum is 7, and for very
hard search it is 1. These maximum values were chosen to
fit the target-present slopes of the search tasks we simulate.
Given that search displays are rarely completely homoge-
neous, and the FVF certainly is not, the actual number of

Figure 1. Examples of the tasks used in Young and Hulleman
(2013), drawn to scale. Top: easy search for a diagonal amongst
vertical; Middle: medium search for a T amongst L; Bottom:
hard search for a square with a small square in the left top
corner amongst squares with a small square in one of the other
corners. The dotted circle represents the estimated FVF for
each of the three tasks.
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items processed within a given fixation fluctuated randomly
between the minimum and the maximum, sampled from a
uniform distribution. This fluctuation also provides an
abstract representation of some of the spatial aspects of
the FVF, for instance items that fall in both the previous
and current FVF.

2. Parallel processing of items within the FVF. Unlike
item-based approaches, we assume no additional covert
attentional item-to-item shifts within the FVF. Items are
assumed to be processed collectively, for example on the
basis of pooled statistics (Rosenholtz et al. 2012a) although
any other mechanism that selects items as a group rather
than individually would be compatible with our framework.
Yet, information may come at different rates within the
FVF because the FVF is not homogeneous (cf. Findlay &
Gilchrist 1998). It is the rate of information accrual in the
periphery that is key here, as by definition it determines
the FVF, and thus the fixation strategy. Observers may also
eventually select individual items. They will do so if the
task so requires, for example in compound search. For this,
a global search for the target-defining feature may be fol-
lowed by a local search for the response-defining feature.
These different features are likely to have different FVFs,
thus requiring different fixation precision. How the system
switches between features is currently not captured by the
framework, but it does provide a fruitful way of thinking
about this problem: as a transition from large to small FVFs.

3. Fixations of constant duration. When the FVF does
not encompass the entire search display, multiple fixations
are required. Fixations are of constant duration, 250 ms.
This estimate is based on work reporting only a limited rela-
tion between fixation duration and target discriminability in
typical search displays1 (Findlay 1997; Gilchrist & Harvey

2000; Hooge & Erkelens 1996; Over et al. 2007). Fixation
duration does not vary with target discriminability. Rather,
both the number and distribution of fixations vary with the
changing size of the FVF.
4. Limited avoidance of previously fixated areas of the

display. Avoidance of previously fixated locations improves
the efficiency of search (Klein 1988). But visual search has
only limited memory for previously fixated locations (e.g.,
Gilchrist & Harvey 2000; McCarley et al. 2003). Young
and Hulleman (2013) also reported revisits to items, even
for small display sizes. For the current simulations, we
held the number of previously fixated locations that are
avoided constant at four (see McCarley et al. 2003). So,
given enough subsequent fixations, locations will become
available for re-fixation. Because the FVFmay contain mul-
tiple items, many more than four items might be inhibited
during search, because we assume the fixation location, not
individual items, to be inhibited.
5. A stopping rule. Search is seldom completely exhaustive

(Chun & Wolfe 1996). From their eye movement data,
Young and Hulleman (2013) estimated that irrespective of
display size around 15% of the search items were never
visited. For the current simulations the Quit Threshold –
the proportion of items to be inspected before search was ter-
minated with a target-absent response –was therefore fixed at
85%. Again, more detailed models have to specify actual stop-
ping mechanisms. Our simulation merely assumes that it is
possible to keep track of the proportion of items inspected.

Figure 2 shows a flow diagram of the conceptual frame-
work with its five parameters: Minimum number of items in
FVF, Maximum number of items in FVF, Fixation dura-
tion, Quit Threshold, and Number of fixation locations

Figure 2. Flow diagram of the conceptual framework. Please see the text for an explanation. For the simulations reported in this paper,
the values for the parameters (ellipses in the flow diagram) are printed in bold: Fixation Duration: 250 ms; Quit Threshold 85%; Memory
for previously fixated areas: 4. Minimum number of items processed per fixation: 1. For the simulations of easy, medium and hard search,
the maximum number of items processed per fixation equalled 30, 7 and 1 respectively.
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avoided. The parameters are represented by ellipses, and
dashed lines connect them to the parts of the search
process that they control. As input, the framework takes
the values for the five parameters, plus the number of sim-
ulations required and the to-be-simulated display size.
Moreover, of these five parameters, only the maximum
number of items in the FVF was variable. The other four
parameters were held constant across all simulations. As
output, the simulation gives mean and standard deviations
for RTs and number of fixations, proportion error on
target-present and target-absent trials and frequency
counts for the RTs. Each time a new patch of the display
is fixated, the fixation duration is added to the total RT.
Thus, the RT for a trial is simply the number of fixations
multiplied by their (constant) duration. Although this
yields individual trial RTs that are multiples of 250 ms,
this is sufficient for our present purposes.
A simulated trial starts by selecting a patch of the display.

The current implementation is purely conceptual and does
not take images or even lists of features as its input. Instead,
search displays are represented as an array of items (effec-
tively, a string of 0’s). One of these items is randomly
chosen to be the target (and turned into a 1). Again, we
point out that for displays that consist of items, this suffi-
ciently simulates a spatial FVF (see Fig. 1). Fixations are
implemented as selections from this array, where the
number of items selected per fixation depends on the size
of the FVF (this number randomly falls between the
minimum and maximum for the FVF). If a selection con-
tains the target, search terminates with a target-present
response. If the target has not been found, another patch
of the display is selected, unless the stopping criterion is
met and 85% of the items in the search display have
been processed. In this case, the trial terminates with a
target-absent response.
We ran Monte Carlo simulations with 10,000 repetitions

for each combination of task difficulty, target presence, and
display size.

5.3. Simulating the main findings in visual search

The visual search literature is extremely rich, reporting a
range of findings too wide to treat comprehensively here.
We focus on what we see as the central variables, namely
manual RTs and their corresponding search slopes,
errors, and fixations, for both present and absent trials. As
argued by others, (e.g., Moran et al. 2013; Wolfe 2007),
this should be done not only in terms of averages, but also
in terms of distributions, because different ranges of behav-
iour can lead to the same average and thus distributions
provide additional information on the underlying process.
Of course, any such selection of variables carries a degree
of subjectivity, and we refer to Wolfe (2007), for a list of
eight core wishes, some of which return here and some
others that we regard secondary to the present purpose.
We stress again that what we present here is a proof of
concept, establishing the viability of our framework, rather
than a formal fit of a specific model.

5.3.1. Slopes of average RTs and number of
fixations. Figure 1 shows the stimuli used by Young &
Hulleman (2013) that yielded data (Figs. 3–6) that in our
view are representative for a range of classic visual search

tasks, from very easy, via medium difficulty to outright
hard. Exactly by choosing standard laboratory search dis-
plays with individual items (rather than e.g., real world
scenes), we can demonstrate that our approach is a viable
replacement for item-based approaches. We point to Zelin-
sky and Sheinberg (1995) for an earlier conceptual expres-
sion of this idea (though without simulations). Figure 3
shows RT data, Figure 4 shows the SDs for the RTs,
Figure 5 shows the number of fixations, and Figure 6
shows the SDs for the number of fixations. Please note
the similarity between the patterns for RTs and numbers
of fixations. Alongside the experimental data in Figures
3–6, the simulated data are shown. The simulated patterns
for RTs and fixations are largely equivalent, because the
framework simply assumes that fixations drive the RTs,
and fixation duration is held constant. The small differences
between RTs and fixation numbers stem from the fact that
only correct trials were included for RTs, whereas we
included all trials for the fixations (following Young &
Hulleman 2013). All in all, with one free parameter, the
simulation qualitatively captures the data pattern for both
RTs and fixations. For the RTs, it yields flat search slopes
in easy search, and intermediate to outright steep search
slopes in medium and hard search. Moreover, for both
medium and hard search, the slopes are considerably
steeper for the target-absent than for the target-present
trials. For the fixations, our simulation replicates the
finding that target-absent trials in hard search are the
only condition where the number of fixations exceeds
the number of items (Fig. 5).
The simplicity of our current stopping rule leads to an

overestimation of the target-absent slopes in hard search
(Fig. 3). Because there is only one item in the FVF and a
location is allowed to be fixated any number of times as
long as it is not among the last four fixated locations, the
simulation has problems reaching 85% by finding the
items it has not yet visited, especially for the largest
display size. This also becomes clear from the fixations:
the number of fixations in the largest display size is overes-
timated, too (Fig. 5). Clearly, a more sophisticated stopping
rule is necessary.

5.3.2 Errors. The simulation yields fairly good estimates
for the error rates across the search difficulties. It also
captures the increase in error rates for very difficult
search (Figure 3).2 Because the simulation does not
contain a guessing parameter, it always terminates with a
target-absent response when it has not found the target.
Because this is the correct answer for a target-absent
display, the simulation necessarily predicts perfect perfor-
mance on target-absent trials.

5.3.3 Variability and distributions. The variability of RTs
has been problematic for serial item-based accounts,
which predict that RTs in target-absent trials will be less
variable than RTs in target-present trials. Target-absent
decisions can only be made after the last item has been
inspected, but a target-present response can be given as
soon as the target has been found. Target-absent responses
will therefore cluster around the time point of the inspec-
tion of the last item. But target-present responses will
have more variable RTs, because the target might be the
first item selected, the last item selected or any item in
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between. Yet, target-absent trials are typically more vari-
able than target-present trials (e.g., Wolfe 1994; 2007).
Guided Search 4.0, has solved this problem, and repro-
duces the correct variability pattern. Because item-based
accounts like Guided Search already consider search for
T among L purely item-by-item, they predict that the
medium and hard task will both have more variability in
target-absent RTs. However, Figure 4 shows that this
only holds for medium search. For hard search, RT vari-
ability is largest in target-present trials. This pattern is
repeated for the number of fixations (Figure 6). Note
that this qualitative similarity in the variability of RTs and
number of fixations is in keeping with our framework.

As becomes clear from Figures 4 and 6, the simulations
capture almost all important aspects of this variability
pattern. For hard search, target-present trials show more
variability in RTs and number of fixations than target-
absent trials, and this difference increases with set size.
For medium search, especially at the largest display size,
the reverse is found. Here, target-absent trials are more
variable for both RTs and number of fixations. For easy
search, larger variability for target-absent trials is found
for all display sizes.
It is striking that ournaïve simulation replicates the reversal

from larger variability for target-absent trials in easy and
medium search to larger variability for target-present

Figure 3. Mean RTs as function of display size. The error proportions are printed next to the symbols and the search slopes can be found
on the right of the graphs. Left: Results from Young and Hulleman (2013). The error bars indicate between-participant SEM. In the easy
search task, participants searched for a / among |. In the medium difficulty search task they searched for a T amongst L. In the hard search
task, the target was a square with a smaller square in the left top corner amongst squares with a smaller square in one of the other corners.
Right: Results from the simulation. In the easy search task, 1–30 items were processed per fixation. In the medium task, 1–7 items were
processed. In the hard task 1 item was processed per fixation. Top row: overview of the RTs. Second row: easy search. Third row: medium
search. Bottom row: hard search. Open symbols: target-absent; closed symbols: target-present.
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trials in hard search. This suggests that it succeeds in captur-
ing a crucial aspect of the search process: namely that the size
of the FVF increases as search becomes easier.
When the FVF contains multiple items, the difference in

RT-variability between target-absent and target-present
trials becomes smaller, because the range of time points
at which the target is found is reduced substantially.
Rather than increasing with the number of items, variability
on target-present trials will only increase with the number
of fixations. Moreover, the variability of target-absent trials
changes less, because the RTs will remain clustered around
the time of the fixation that inspects the last items. Conse-
quently, FVFs large enough to contain multiple items
selectively decrease the variability in target-present trials.
Furthermore, limited memory for previously fixated

locations increases the variability of target-absent trials
more. Re-fixations are a source of RT variability, because
any number can occur during a search trial. However, the
fewer fixations are made to begin with, the fewer re-fixa-
tions there will be and the less variability they will add to
RTs and number of fixations. Because more time is spent
in the search display when there is no target, target-
absent trials are more prone to this effect. This combina-
tion of FVFs containing multiple items and limited

memory enables our simulation to overcome the inherent
tendency of target-present trials to be more variable
(because it remains the case that the target can be found
during any fixation) whenever search is not too hard.
When search is hard, both these factors lose their influ-

ence. First, the FVF contains only a single item. This sub-
stantially increases the range of time points at which the
target can be found, thereby increasing the variability in
RTs for target-present trials. Second, even on target-
present trials so many fixations are made that the limited
memory for previously visited locations no longer prevents
re-fixations.
We also looked at the specific shape of the RT distribu-

tions. Figure 7 shows experimentally observed RT distribu-
tions for an easy, a medium and a hard task, together with
the RT distributions based on our simulations. (We used
data from Wolfe et al. 2010a for the easy and medium
task rather than the Young and Hulleman 2013 data
because the former is based on many more trials per partic-
ipant.) As Figure 7 shows, the patterns for both sets of data
are essentially identical. Across the search difficulties, our
simulation captures the distributions for target-present
trials fairly well. For easy search, it replicates the narrow
single-peaked distribution from Wolfe et al. (2010a),

Figure 4. SDs of the reaction times as a function of display size. Left: Results from Young and Hulleman (2013). Right: Results from the
simulation. Top row: easy search. Middle row: medium search. Bottom row: hard search. Open symbols: target-absent; closed symbols:
target-present.
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although there is some widening for the largest display size.
For medium search, the simulation replicates both the nar-
rowness of the RT-distribution for the smallest display size
and its widening for larger display sizes. For hard search,
the simulation yields the relatively narrow distribution of
the smallest display size and the very wide distributions
for the larger display sizes.

For target-absent trials, although the fits are somewhat
less neat, the framework again captures important qualita-
tive aspects. For easy search, the simulation produces the
narrow, peaked distribution for the smaller display sizes,
although the distribution widens a little for the largest
display size. For medium search, the RT-distributions
widen with increasing display size, accompanied by a
decrease in the mode of the distribution. However, the dis-
tributions are not dispersed widely enough around the
mode. For hard search, the fit is relatively good: the
mode of the distribution for the smallest display size is
largest and fairly well-defined, whereas the modes for the
larger display sizes are less clearly defined.

The poorer fit of the simulated to the actual target-
absent distributions is, again, probably a result of the sim-
plicity of our stopping criterion. Because the target-absent
decision is a strategic one, where participants have to
take into account a variety of factors, it is unlikely to be

fully captured using a stopping rule as simple as the one
used here. We will return to this in the General Discussion.

6. General discussion

There are many different models of visual search, each
explaining a fair part of the search process. The most
popular ones were designed to account for the mean RTs
and error rates observed in search experiments (e.g., FIT,
Guided Search, AET). Recent attempts also accurately
account for the distribution of RTs (e.g., Wolfe 2007;
Moran et al. 2013), while others focused on eye movement
patterns in visual search (e.g., Najemnik & Geisler 2008;
Pomplun 2007; Zelinsky 2008). So, none of the individual
elements of the framework we propose here is new, and
much of the hard work has been done by others.
However, further progress appears to be stymied. Those
models that focus on RTs consider eye movements to be
a sideshow. And although we believe that the models that
focus on eye movements should be able to account for
RT slopes too, so far they appear to have been hesitant to
do so (see Zelinsky & Sheinberg 1995, for an exception).
We argue that further development of current models is
hindered by the implicit but dominant view that the

Figure 5. Number of fixations as a function of display size. Left: Results from Young and Hulleman (2013). Right: Results from the
simulation. Top row: easy search. Middle row: medium search. Bottom row: hard search. Open symbols: target-absent; closed
symbols: target-present. For the results from Young and Hulleman (2013), the error bars indicate SEM.
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individual item is the conceptual unit of visual search, and
that therefore (1) the shallow end of the search slope spec-
trum is the most informative, and (2) eye movements are a
nuisance variable to be controlled rather than a crucial the-
oretical component of the search process. These implicit
assumptions have prevented current models from explain-
ing all aspects of search, from eye movements to manual
RTs, from errors to distributions, from present to absent
responses, and from very hard to very easy search. We
hope that our simulation has shown that an approach to
visual search that abandons these implicit assumptions
has a lot of descriptive power, and holds the promise of
uniting the wide range of findings into a single framework.
With only five parameters, the framework provides inte-
grated and qualitatively accurate predictions of the means
and variability of RTs and number of fixations, as well as
error rates for a variety of search tasks. The framework
thus appears to have achieved the goal of uniting manual
and oculomotor behaviour.
In particular, our simulations suggest that rather than

being a reflection of the selection rate of individual items,
search slopes can be the consequence of the interaction
between a constant fixation duration and the size of the
FVF. The simulation shows that with appropriately

chosen FVF sizes, the framework covers the entire range
of observed search slopes, from 0 ms/item to 150 ms/item
for target-present, without having to change any other fun-
damental assumptions. Despite earlier debates (Eckstein
2011; Findlay & Gilchrist 1998; Zelinsky & Sheinberg
1995), the emphasis on items as the conceptual unit in
visual search seems to have led to an enduring misinterpre-
tation of search slopes. We believe our simulation now pro-
vides a compelling argument for abandoning the stance
that search primarily revolves around individual items.

6.1. RTs and variability

According to Wolfe et al. (2010a), successful models of
visual search should describe both mean RTs and their var-
iability. To capture the fact that target-absent trials are
more variable than target-present trials in a search of mod-
erate difficulty (for 2 amongst 5), Guided Search 4.0 had to
adopt a new item selection mechanism compared to its pre-
decessors. However, because it is item-based, the model
also predicts that larger variability in target-absent trials
should be found across the entire range of search difficul-
ties. But when search becomes very hard there is a cross-
over, and target-present trials become more variable.3 It

Figure 6. SDs of the number of fixations as a function of display size. Left: Results from Young and Hulleman (2013). Right: Results
from the simulation. Top row: easy search. Middle row: medium search. Bottom row: hard search. Open symbols: target-absent; closed
symbols: target-present.
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is especially this crossover in variability that is not trivial to
capture in item-based models of visual search. Recently,
Moran et al. (2013) have presented an extension of
Guided Search that is also capable of reproducing the
RT-variability patterns that are observed in medium diffi-
culty search and easy search (albeit with separate sets of
8 fitting parameters each). It would be interesting to see
whether the same model can cope with the inversion of
the RT-distributions in very hard search. Here our frame-
work appears to make unique predictions.

We hold that the difficulties or even the failure of these
models to capture the distributional aspects of RTs in visual
search is a direct consequence of the implicit assumption
that the individual item is its conceptual unit. Our
simulation shows that this may be the case for a very hard
search, but for most searches, including that for T amongst
Ls, the data pattern is best captured if one assumes that
the FVF covers multiple items. This assumption allows the
other factors that influence termination of target-absent
trials to increase RT-variability to such an extent that it
becomes larger than in target-present trials. By themselves
these factors are not enough, as is demonstrated by the
larger variability in target-present trials when the FVF

only covers a single item. Thus, the adoption of the individ-
ual fixation as the conceptual unit offers a promising way to
capture RT-distributions (and distributions of number of
fixations for that matter) across the entire range of search
difficulties.
Even if item-based models were to successfully fit the

RT distributions and the error rates across a wide range
of search difficulties, we would still argue that fixations
should be preferred over an item-based selection rate
because this choice increases explanatory power while
maintaining relative simplicity. There is a direct link
between number of fixations and RTs in our framework.
The rate of selecting new parts of the search display is
fixed at 250 ms, and has a clear basis: it is how long the
eyes remain steady. This sets it apart from models of
rapid serial covert shifts of attention like Guided Search
and AET. These would need additional assumptions to
incorporate eye movements. The need for a direct link
becomes clear when RTs are plotted as a function of
number of fixations (Figure 8): There is an almost perfect
linear relationship, irrespective of set size, presence of
the target, or difficulty of the search task (see also Zelinsky
& Sheinberg 1995). For our framework, this is only natural,

Figure 7. Left: Experimentally observed RT-distributions. Right: Simulated RT-distributions. Top: easy search (red vertical amongst
green verticals, search slopes 1.0 and 0.7 ms/item for target-present and target-absent, respectively) reproduced from the Wolfe et al.
(2010a) data set. Simulated FVF: 1–30 items. Middle: medium difficulty search (spatial configuration search -2 amongst 5’s-, search
slopes 43 and 95 ms/item for target-present and target-absent, respectively) reproduced from the Wolfe et al. (2010a) data set.
Simulated FVF: 1–7 items. Bottom: Hard search task (square with smaller square in left top corner amongst squares with smaller
square in other corner, search slopes 139 and 289 ms/item for target-present and target-absent, respectively) based on the data of
Young and Hulleman (2013). Simulated FVF: 1 item. Solid lines: target-present trials. Dashed lines target-absent trials. Bin size: 250 ms.
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even trivial, because RTs are directly based on the number
of fixations. For item-based accounts though, this linearity
is not so trivial, because they explain differences in search
slopes through differences in covert or central selection
rates that are in principle independent of eye movements.
There is therefore no a priori reason for the RTs from a
range of task difficulties to line up so neatly.

6.2. The benefits of the Functional Viewing Field

Of course, within our framework the assumption of an
item-based selection rate is replaced with another assump-
tion, namely the FVF. One could argue that we are simply
robbing Peter to pay Paul. However, we believe the
concept of the FVF to be more elegant for several reasons.
First – and this is our main point – the FVF allows for an

integrated explanation: Search RTs are determined by the
number of fixations. The number of fixations is determined
by the physiological limitations of peripheral vision, in
terms of both retinal resolution and neural competition in
early sensory areas. In other words, rather than being
limited by some central processor, search is limited by
the eye.
Second, an emphasis on the FVF allows for direct links

to other findings in visual perception research, such as
the crowding and lateral masking literature. So far, many
visual search investigators tend to avoid these phenomena.
By accepting a direct link between them (as was already
done by Engel 1977; Geisler & Chou 1995; see also
Motter & Belky 1998b), we can start to investigate how
they affect visual search. Taking into account the peripheral

limits of vision might also explain part of the seemingly
coarse coding of orientation in visual search (e.g., Wolfe
1994): orientation discrimination thresholds increase with
foveal distance even when only a single stimulus is pre-
sented (Westheimer 1982). More emphasis on the FVF
would likewise encompass data from Duncan and Hum-
phreys (1989). In addition to reducing the grouping
which allows distractors to be rejected simultaneously (as
suggested by Duncan & Humphreys 1989), increased
target-distractor similarity probably renders peripheral
detection of the target more difficult, thus reducing the
FVF and increasing the need to foveate items more
closely. This increases the number of fixations needed to
cover the display and therefore the RTs. Similarly, increas-
ing the similarity between distractors increases homogene-
ity, making peripheral targets more discriminable. This
increases the FVF and thereby reduces the need for eye
movements and decreases RTs. In this sense, the FVF
could be seen to implement Duncan and Humphreys’
(1989) original idea of “structural units”: groups or
chunks of visual objects defined at different scales that con-
stitute the input to the search process.
Third, differences in FVF size explain the difference in

robustness against item motion between medium search
and hard search (Hulleman 2010). Larger FVFs offer protec-
tion against item motion in at least two ways. First, in larger
FVFs, multiple items are processed simultaneously, so any
re-inspection of an item that moved from a previously
fixated location to the currently fixated one does not incur
that much of an RT-cost. Second, because larger FVFs
yield fewer fixations, there will be fewer re-inspections to
begin with. When the FVF contains only a single item, both
types of protection disappear. When an item is re-inspected,
there is a substantial RT cost, and because many more fixa-
tions are needed when only a single item is processed in the
FVF, these re-inspections are more likely to occur.
Fourth, it allows us tomove on from using visual search to

diagnose which visual properties deserve special feature
status (a research line to which we happily contributed our-
selves, e.g., Hulleman et al. 2000; Olivers & Van der Helm
1998 and, though dwindling, is still ongoing see e.g., Li
et al. 2014). Assigning feature status implies a binary classi-
fication according to which the visual property either is or is
not available for guiding attention (as implemented in sepa-
rate feature maps). Guidance is then expressed through
shallow search slopes.We do not argue against the existence
of basic features, and the original guiding features such as
colour and orientation have clear connections to cortical
architecture. However, the criterion of flat search slopes
has yielded a wide variety of candidates, some quite unlikely
(e.g., pictorial depth cues, shading, see Wolfe & Horowitz
2004 for a complete overview). Wolfe and Horowitz
(2004) therefore argued that flat search slopes should not
solely determine feature status. After applying further crite-
ria,Wolfe andHorowitz (2004) accorded undoubted feature
status only to colour, motion, orientation and size.
FVFs allow for a wider range of visual characteristics to

come into play. By accepting the FVF as the major delim-
iter, the question as to what is a feature can be replaced by
what is detectable from the corner of the eye. This is likely
to correlate with the existing feature rankings, but allows
for more flexibility, as detectability will improve with any
sufficiently large difference signal relative to the surround,
whether feature-based, conjunction-based, or based on

Figure 8. RTs as a function of fixation. Top: data from Young
and Hulleman (2013). Bottom: simulated data. Open symbols:
target-absent. Closed symbols: target-present. Squares: Easy
search / 1–30; Circles: Medium search / 1–7; Triangles: Hard
search / 1–1.
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more widely sampled statistics. Thus, where Guided
Search explicitly dissociates guidance from discriminability
(Wolfe 2007), the FVF account predicts that any
discriminable property can be used for guidance, even Ts
amongst Ls. Flat search slopes no longer confer special
status, but simply indicate that a particular discrimination
is easy (or target-distractor similarity is low, cf. Duncan &
Humphreys 1989). Moreover, factors such as relative size
(scaling) are also naturally allowed into the equation.
Instead of the binary distinction between features and
non-features, FVFs thus offer a continuous spectrum of
search performance.

Finally, we tentatively propose that the concept of an
FVF also allows for a more integrated explanation of
semantic biases in search through scenes. Research has
indicated that participants are able to bring to bear their
knowledge of scenes when they have to search for a partic-
ular item (e.g., a pan in a kitchen, Henderson & Holling-
worth 1999; Wolfe et al. 2011a). They mainly fixate likely
parts of the search display (i.e., horizontal surfaces) and
avoid unlikely ones (e.g., the walls and the kitchen
window). Within purely item-based approaches to visual
search, where individual items are selected at a rate of
25–50 ms/item, this semantic guidance is difficult to
explain. Establishing that the scene is a kitchen to begin
with seems to require the painstaking collection of multiple
items. Yet, research shows that very brief exposures of 50
ms are enough for scene-categorization (Greene & Oliva
2009). To account for this fast scene categorization an
entirely separate pathway for the parallel processing of
scene information has been invoked to bring search of
scenes within the purview of models of “classic” search
like Guided Search (e.g., Wolfe et al. 2011b). This
pathway rapidly determines the scene type, and then
passes on this information to bias the search process in
the other pathway via semantic and episodic guidance
towards likely spatial locations. Yet the underlying search
mechanism has not changed. Individual items are still
selected as candidate targets. A separate parallel scene
pathway is unnecessary for a fixation-based account like
the one proposed here. The FVF already assumes parallel
processing, and allows for the extraction of global informa-
tion on the basis of image statistics, at the very first fixation.
While the underlying computations would remain similar,
different types of information will yield different FVFs.
Whereas the FVF for an individual object in a scene may
be small, the FVF for recognizing the scene as a whole is
likely to be much larger. Thus, the same computations
across a smaller FVF that allow the decision that a T is
present in a display full of L’s may be used across a very
large FVF to establish that this is a forest scene rather
than a city scene, or that an animal is likely to be present
rather than a car (c.f. Thorpe et al. 1996). An interesting
question for the future, then, is the precedence of various
FVFs for different types of information.

6.3. Can item-based models not be easily adapted?

We believe extending item-based models to include eye
movements will be challenging. Note that Guided Search,
as the most important and developed proponent of item-
based search, goes quite a long way in trying to maintain
the individual item as the core of the search process: It pos-
tulates a separate global scene processing pathway in order

to preserve the item processing pathway, it assumes a selec-
tion bottleneck to connect fast item selection at the front-
end to slow item processing at the back-end, and it consid-
ers eye movements at best as the reason that there is such a
slow item processing bottleneck. Moreover, the separation
of item selection from item processing that has been imple-
mented with the car wash mechanism of Guided Search 4.0
(Wolfe 2007) creates problems when eye movements are
taken into account. Important differences emerge
between the item that enters the processing stream first
(the processing of which will be nearing completion by
the time of the next fixation) and the item that enters last
(the processing of which will only just have started). For
example, an experiment reported by Henderson and Hol-
lingworth (1999) suggests that the representation of an
item deteriorates once it is no longer fixated. Participants
were less likely to detect a change made to an item
during a saccade if the item in question had been fixated
immediately before the saccade. If items are selected
sequentially, this deterioration of representation would
affect the most recently selected item much more than
the item selected first. Moreover, single-cell recordings in
the lateral intraparietal area of monkeys (Kusunoki & Gold-
berg 2003) show a reduction in sensitivity of the receptive
field even before a saccade is made. This finding suggests
that the representation of items might already deteriorate
towards the end of the fixation. Again this implies that, if
items were selected sequentially, items that enter the pro-
cessing stream early will have an advantage over those that
enter the processing stream late. An approach based on fix-
ations as proposed here allows these selection order prob-
lems to be circumvented, because all items, in principle,
are selected and processed simultaneously. A further sim-
plification offered is that selection time, processing time
and dwell time are all allowed to be identical and equal
to the fixation duration. In other words, our framework
makes additional assumptions about the role of central
selection bottlenecks redundant.

6.4. What about covert search (when the eyes are kept
still)?

It might seem that our account is fundamentally flawed
simply because it is possible to complete visual search
tasks without eye movements, and results seem identical
when corrected for peripheral limitations. There are
several answers to this objection. First, our account takes
fixations as units, not eye movements, and every search
includes at least one fixation. Our simulation allows for
target-present responses during the first fixation. Figure 7
shows that most of the target-present responses in easy
search did not involve a second fixation, and even for
hard search there are trials with only one fixation. For
easy search there are also many target-absent responses
that do not involve eye movements. However, it is indeed
the case that medium and hard search typically involve
multiple fixations.
Second, and more important, crucial to our fixation-

based framework are the presumed limitations of the
FVF (which under normal circumstances lead to eye move-
ments), not the eye movement per se. Thus, even if no eye
movement is made, the non-homogeneity of the visual field
in terms of attention and lateral masking is still very likely to
influence selection. Even if targets can in principle be
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detected from the corner of the eye when eye movements
are not allowed, it is still likely that detection takes longer or
becomes more erroneous when targets become less dis-
criminable and set sizes increase. In fact, the argument
that search can proceed covertly at a level equivalent to
overt search when displays are corrected for peripheral lim-
itations implies that usually covert search is much harder.
Related to this, one reason why participants may choose
to make eye movements in the first place is that although
they could perform a particular task far into the periphery,
it might simply be more comfortable or more efficient to
make an eye movement that moves the area of scrutiny
closer to the fovea, even though this in itself might take
some time (Findlay & Gilchrist 1998). Thus, search with
and without eye movements may be similar because they
are driven by the same FVF.
Some results appear to support this contention. For

example, Klein and Farrell (1989) compared search perfor-
mance with and without eye movements. Although search
latencies were nearly identical, analyses of the error pat-
terns showed that, without eye movements, participants
encountered difficulties with the larger display size, partic-
ularly on target-absent trials, where error rates doubled.
Thus, it appears that although the task could be performed
in principle, targets did become harder to discriminate
when eye movements were not allowed. Zelinsky and
Sheinberg (1997) found little difference in error rates
between the fixed-eye condition and the free-eye condition
for their difficult search tasks. However, this time the fixed-
eye condition yielded faster RTs, especially for the largest
display size. One reason for the relative disadvantage in
the free eye movement condition may lie in saccadic sup-
pression, the loss in visual sensitivity during an eye move-
ment (e.g., Volkman et al. 1978). Another may be the
more widely spaced displays used, which contained a rela-
tively large number of items. Although all items may then in
principle be visible initially from the central fixation point,
once observers make an eye movement to an area at one
end of the display, they lose acuity (and conspicuity) for
the items at the other end, potentially to the point that
the target is no longer discriminable, making further eye
movements necessary. If so, making one eye movement
likely results in making more. Thus, whether free viewing
provides a benefit or a cost depends on the design of the
display, which determines the FVF (see also Findlay & Gil-
christ 1998, for a similar point).

6.5. Does this FVF approach make any predictions at all?

One criticism of our approach might be that it does not
make any predictions beyond the simple observations that
if search takes long, the FVF must have been small and if
search is fast, the FVF must have been large. It does not
contain an independent mechanism that predicts the size
of the FVF.
Our first response to this is that it is not our aim to

present a mechanistic model. Rather, we present a concep-
tual framework, to open up different ways of thinking about
visual search, and the important new questions this raises –
together with a conceptual demonstration that it works.
Indeed, clearly, what determines the size of the FVF is
one of the main questions arising from the framework.
But equally clearly, this is not a question that easily

follows from an item-based approach, in which the main
questions are about the way individual items are processed.
Second, our approach does identify where to expect the

largest differences. For example, a direct prediction of the
model is that there should be qualitative differences
between hard search on the one hand, and easier search
on the other. Some we already identified here: robustness
against motion, the influence of peripheral information,
the relation between number of fixations and number of
items, and the pattern of RT distributions. Others have yet
to be explored (e.g., the effects of age-dependent changes
in the size of the FVF; Ball et al. 1988; Sekuler et al. 2000).
Third, existing item-based approaches do not escape cir-

cularity themselves. For example, whether a particular
property is a feature or not is determined by the search
slope. In AET, search efficiency is determined by target-
distractor and distractor-distractor similarity, which so far
have been only been expressed through changes in the
search slopes, rather than on the basis of independent
data or a particular mechanism (with Treisman, 1991, as
an exception). It actually could be argued that an approach
based on FVFs holds the best promise for an escape from
circularity, because there is a direct correlation between
search slopes and the outcome of single fixation detection
tasks outside search (Engel 1977; Geisler & Chou 1995).

6.6. Remaining questions and future directions

Simple and naïve as our framework is, it points out some
clear areas of further research. As alluded to above, the
first knowledge gap that needs filling-in is what determines
the size of the FVF during search. Why do some tasks
have larger FVFs than others? This is an important question,
especially because it seems likely that the factors that deter-
mine FVF size will be closely intertwined with the way
target-presence is determined within the FVF. In our simu-
lation, the difficulty of the search task was assumed, but pref-
erably the assessment of task difficulty should be based on
properties of the search display. In pixel-based approaches,
this problem is computationally tractable. For example, in
TAM (Zelinsky 2008) task difficulty is determined from
the search display by establishing how much more target-
like the most promising area of the search display is relative
to other areas. If the difference is large, the search task is
easy and large eye movements can be made. If it is small,
the search task is difficult and smaller eye movements
should be made. Presumably, a more homogeneous distrac-
tor set will make the target area stand out more, in line with
the central role that target-distractor similarity and distrac-
tor-distractor similarity play in AET (Duncan & Humphreys
1989). Thus, TAM provides a promising avenue for indepen-
dently assessing discriminability.
A different approach with similar outcome may be the

computation of summary statistics across the items in a
fixated patch of the display, as suggested by Rosenholtz
et al. (2012a). These summary statistics allow the visual
system to establish whether the patch contains a target or
not. A salient target against a homogeneous background
will create a reliable deviation in the summary statistics,
while a weak signal against a noisy background will deliver
unreliable statistics. More reliable signals allow for larger
patches to be sampled, and thus larger FVFs. As mentioned
earlier, some types of search tasks require more than can be
delivered by large FVFs alone, as a specific target property is
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required (i.e., its exact location or independent response
feature). This means that FVF size may be dynamic, chang-
ing on-line from large when the target has to be acquired to
small when a specific aspect of the target has to be reported.
Such changes have yet to be explored.

A related question is how the next fixation location is
selected. In our simulation, it was simply assumed that
new items would be selected. Determining the next location
to be selected may depend on many different factors, but
here eye movement models have a clear advantage over
RT-models, because they are specifically designed to
describe eye movement patterns. In fact, there already are
several candidate mechanisms differing in the way they
choose the next location. For example, TAM (Zelinsky
2008) computes the correlation between a target-template
and each pixel in the search display. This correlation will
be highest for the pixel at the centre of the target, but
other positions can also have high correlations. The next fix-
ation location is determined by computing the average posi-
tion of all of the correlations. By increasing the minimum
correlation that is required to contribute towards this
average, fewer and fewer pixels will contribute and the
average position starts to move towards the target. When
the average position exceeds a distance threshold from the
current fixation location, a saccade is triggered. So, fixation
positions are chosen based on the most likely target candi-
date. However, fixations do not necessarily fall on an item,
because the average of all contributing pixels in the display
does not necessarily coincide with an item.

In a different approach, the ideal searcher of Najemnik
and Geisler (2008) computes the probabilities that the
target is located at a number of candidate locations, by cor-
relating the locations with a target template. It determines
the optimal next fixation location by trying to maximize the
possibility of identifying the target after the next fixation,
taking into account the current probabilities and acuity lim-
itations. Therefore, fixation locations are chosen based on
which location will be most useful in the subsequent deci-
sion where the target is, rather than the current most likely
target location. A related suggestion comes from Pomplun
et al. (2003; Pomplun 2007) who proposed the Area Activa-
tion Model (AAM). AAM computes the relative informa-
tiveness for each fixation position, by taking a weighted
sum of all of the surrounding guiding features. The informa-
tiveness depends on search task difficulty, with a larger area
of the display contributing to the informativeness measure
when the task is easier. The resulting map has several
peaks of informativeness, which do not necessarily coincide
with individual items but could fall in between. The first
saccade will go to the highest peak, the next saccade will
then go to the nearest non-visited peak.

Both TAM and AAM make allowances for the difficulty
of the search task when choosing the next fixation location.
But an interesting aspect of AAM is that it rejects groups of
items when the group of items contributing to the informa-
tiveness peak does not contain the target. This makes AAM
more compatible with our proposed framework than TAM,
where always only a single item is matched to the target
template and inhibited when it turns out to be a distractor,
irrespective of the difficulty of the search task.

The third question is how trials are terminated when no
target has been found. All models of visual search, including
the framework presented here, seem to be much better at
describing target-present trials than target-absent trials.

Because for many critical tasks the consequences of a miss
are much more severe than the consequences of a false
alarm (X-rays and CT-scans, airport security screening), it
is also from an applied point of view vital to understand
target-absent decisions better. Target-absent decisions not
only influence the RTs for target-absent trials, but also the
error rates on target-present trials. Both of these areas are
amongst the weaker aspects of the framework we have pre-
sented here. They are amongst the weaker aspects of mech-
anistic models (e.g., Guided Search) too and some leave out
target-absent trials altogether (TAM; Zelinsky 2008, but see
Zelinsky et al. 2013). Multiple triggers for the target-absent
decision have been proposed (number of items inspected,
time spent searching the display, success of previous
target-absent response, frequency of target-presence; see
also Chun & Wolfe 1996), but they all seem to be weighed
at different rates at different times, without a clear ranking
of their importance. Any simple model of target-absent deci-
sions (and, therefore, any simple model of visual search)
seems doomed to fail in its attempt to capture the essence
of target-absent decisions, especially when the entire spec-
trum of search difficulty has to be taken into account. This
is demonstrated by our simulations. Our simple stopping-cri-
terion terminated medium searches too early, but at the
same time let them continue too long in both easy and diffi-
cult search. At the very least, this suggests that participants
do weigh the difficulty of the search task in their target-
absent decision. In that sense, future mechanistic models
can be improved by letting task difficulty not only shape
the search process by determining the size of the FVF,
but also by changing the criteria for terminating a search
when the target has not been found.
Finally, some of the most exciting areas in visual search

are tasks in medical imaging (does this mammogram
contain a suspicious lesion) and in airport security (does
this bag contain a threat). Although these areas have seen
considerable interest from fundamental cognitive psychol-
ogy (Donnelly et al. 2006; Drew et al. 2013a; 2013b;
2013c; Evans et al. 2013a; Godwin et al. 2010; Menneer
et al. 2007; Wolfe et al. 2005; 2013), they have been under-
served by item-based models (or any form of overarching
theory of search, for that matter), not least because it is dif-
ficult to determine how many items the kind of images typ-
ically used actually contain.Moreover, the kind of target that
needs to be found (“threat,” “lesion”) also sits uncomfortably
with an item-based approach, because they can take on a
multitude of fuzzy forms and are therefore difficult to
capture in a target-template. Models are necessarily tested
by deriving predictions from them. Item-based models
will make item-based predictions and it is therefore only
natural that many lab-based experiments use displays with
clearly defined items. Unfortunately, this has opened up a
gap with real-world tasks that is only now beginning to be
bridged.Webelieve that by emphasising the role and impor-
tance of fixations, this bridging process will be sped up,
because it focuses on a factor that lab-tasks and real-world
tasks have in common. We hope that our proposed frame-
work can be a starting point, which allows the exploration of
the many factors that influence real-world tasks (experience,
time pressure, age, target-prevalence, training, unknown
number of targets, complex backgrounds) while at the same
time providing a foundation for more fundamental research
into the processes underlying visual search, bringing real-
world tasks and lab tasks closer together.
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7. Conclusion

Our simulation has demonstrated that a fixation-based
framework shows considerable promise as an integrated
account of visual search, and allows for the abandonment
of some of the implicit assumptions that have dominated
the field for decades. It reveals how an acknowledgement
of the functional visual field and the adoption of the
number of fixations (rather than the number of items) as
the driver of RTs yield a surprisingly adequate description
of various aspects of visual search behaviour. Although the
conceptual nature of the framework is an obvious weak-
ness, it is also a core strength: Exactly because the frame-
work does not specify the details of the mechanisms
involved in visual search, it allows a clearer view of the
explanatory power of the underlying principles.
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NOTES
1. When search items are highly surprising or very difficult dis-

criminations have to be made within an item, fixation durations
might increase.

2. For the difficult condition, search is terminated closer to the
quit proportion. Because items are inspected one by one, the
number of inspected items will exceed the limit imposed by the
Quit Threshold by maximally 1. For medium and easy search, 1
to 7 and 1 to 30 new items are inspected per additional fixation.
Therefore the limit based on the quit proportion can be exceeded
quite substantially. Consequently, more items are inspected on
average and fewer errors will be made. The larger FVF is also
the reason that error proportions for easy search are even lower
than for medium search.

3. Admittedly, we draw mainly on our own work for this obser-
vation. This is due to the rarity of other studies that look at the RT
variability in hard search. This is probably exactly because stan-
dard item-based theories hold that hard search does not add to
the observations in medium search, and is furthermore compli-
cated by eye movements.
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Analysing real-world visual search tasks helps
explain what the functional visual field is, and
what its neural mechanisms are

doi:10.1017/S0140525X16000030, e133

John Campion
30A London Road, Liphook, Hants GU30 7AN, United Kingdom.
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Abstract: Rejecting information-processing-based theory permits the
merging of a top-down analysis of visual search tasks with a bottom-up
analysis of brain structure and function. This reveals the true nature of
the functional visual field and its precise role in the conduct of visual
search tasks. The merits of such analyses over the traditional methods of
the authors are described.

Aims. The authors have served the science well by introducing
the important concept of the functional visual field (FVF), but
they fail to exploit it fully because of their adherence to conven-
tional ways of working, namely embracing an information process-
ing view of cognition, using data from invented laboratory tasks,
and basing explanations of performance on post hoc conjecture
rather than strong theory.
I here describe research based on new ways of working that

develops a strong theory of the FVF and its role in real-world
vision. In doing so it provides answers to three questions posed
by the authors: How do covert shifts of attention and eye move-
ments relate to the FVF; what determines the size of the FVF;
and how are fixation points selected?
To date the work has been presented only piecemeal for rather

niche audiences; more comprehensive mainstream treatments are
in preparation.
Methods. Theoretical and methodological challenges encoun-

tered in early neuropsychological work (Campion 1987; Campion
et al. 1983), and in later applied work (Campion 1989), led me to
develop a theoretical paradigm that, unlike information processing,
was able to encapsulate what the world actually looks like to per-
ceivers, and how this depends on what they are trying to do in it.
This laid the foundations of a general theory of visual percep-

tion based on a reworking and integrating of ideas from classical
approaches such as Gestaltism (Koffka 1935), Ecological Optics
(Gibson 1979), and Constructionism (Neisser 1966) – ideas
which information processing had destroyed through assimilation
(see Campion 2014; Palmer 1999). These reworked ideas were
blended with modern conceptions of brain structure and function
(Campion 2009; Campion 2011).
Four core ideas underpin the theory:

1. Perception is not the processing of information but the
instantiation of knowledge – the controlled, energy-consum-
ing fusion of a sensory database with learned knowledge.
2. Knowledge is of different types and is constructed

and recruited by situation-sensitive learned plans to guide
the conduct of tasks.
3. Cognitive and neural processes are not decoupled as

information processing doctrine maintains (e.g. Marr 1982),
but are different levels of description in the reductionist sense.
4. Neural tissue does not perform computations, but has

specialised soft-wired circuits that are established and con-
solidated through experience and are switchable according
to task demands.

It follows that the brain can be properly understood only by
identifying the various levels of description, and establishing the
mappings between them. The case is made here, not by a priori
argument, but by demonstrating that it works.
The top level identified is the task. A cognitive task analysis

(CTA) of the line cancellation task used to diagnose visual hemi-
spatial neglect (Albert 1973) was blended with an analysis of liter-
ature on brain structure and function. The use of CTA is an impor-
tant innovation here, but is standard fare in cognitive ergonomics
where this work originates (Crandall et al. 2006).
Results. Research suggests that the configural aspects of the

world are handled by two knowledge systems that are distinct
but that work together – a locating system subserved by the
right parietal region (RPR) of the brain (see Karnath et al.
2002), and a manipulating system subserved by the left parietal
region (LPR) – see Sirigu et al. 1999. The former is the focus here.

Commentary/Hulleman & Olivers: The impending demise of the item in visual search

20 BEHAVIORAL AND BRAIN SCIENCES, 40 (2017)
https://doi.org/10.1017/S0140525X16000133
Downloaded from https://www.cambridge.org/core. University of Florida, on 04 Aug 2017 at 14:24:15, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

mailto:tj.campion@btinternet.com
https://doi.org/10.1017/S0140525X16000133
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


The RPR does not process information or compute space; it uses
a re-sizeable and moveable workspace centred on the fixation
point – a scene – equivalent to the authors’ FVF, but more pre-
cisely defined. It is an area within which every point is specified,
by a set of coordinates, in terms of potential eye movements ref-
erenced to the fovea rather than physical distance. They become
physical distance when the knowledge is instantiated.

The scene is used as follows (see Fig. 1):

1. The eyes fixate the centre of a line. Using the line object
coordinates thus generated, a target line is cognitively (covertly)
selected. The eyes then move to the target line, followed by the
hand. Note, the scene – the set of coordinates –moves with the
eyes, so that at each fixation point a new set of coordinates is gen-
erated. When the necessary eye movements have become

extended to a comfortable maximum, the head is shifted. The
process is repeated until all of the lines have been cancelled.

2. The size of the scene is determined by the nature of the task,
for example how precise it is, and how quickly it has to be per-
formed. In driving a car a scene might be the entire visual field;
in mending a watch, it might be just the fovea.

3. The choice of fixation point is again determined by the nature
of the task. In this task, subjects tend towork from left to right and/or
clockwise in a systematic fashion because this is natural and practical.
In other cases the choicemight be determined by colour or position.

The explanatory power of blending these cognitive data with
neural data is illustrated by the work of Berti & Rizzolatti
(2002), who have identified the special and distinct oculomotor
and reaching circuits shown in Figure 2. In the oculomotor

Figure 1 (Campion). Analysis of the line cancellation task described in the text. The task is to strike through each line on a sheet of
paper. Broken lines represent scenes. EM = eye movement. Numbers indicate head movement number. Letters indicate eye
movement number within a single head movement.

Figure 2 (Campion). Representation of macaque cerebral hemisphere. The light shaded area indicates the oculomotor circuit, and the
dark shaded area the reaching circuit described in the text. LIP = Lateral intraparietal area. FEF = Frontal eye fields. VIP = ventral
intraparietal area. F4 = pre-motor area.
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circuit, neuronal receptive fields are insensitive to distance but are
sensitive to stimuli falling only on a specific point on the retina ref-
erenced to the fovea, whereas neurons in the reaching circuit
prefer three dimensional objects and have receptive fields
coded in body part coordinates.

This explanation contrasts sharply with unhelpfully vague infor-
mation processing terms such as parallel and serial processing
used by the target article authors, and it does away with the
concept of attention as a scientific term altogether. And we
should note in passing that it is the strong dependency of cognitive
operations on the nature of the task they subserve, coupled with
the lack of explicit task analyses in research, that leads to the ambi-
guity and unresolved debate that characterises much cognitive
psychology.

Brief though it is, I hope this illustration is sufficient to demon-
strate the merits of the approach; I commend it to the authors and
to the science.

Eye movements are an important part of the
story, but not the whole story

doi:10.1017/S0140525X16000042, e134

Kyle R. Cave
University of Massachusetts, Amherst, Department of Psychological and Brain
Sciences, Amherst, MA 01003.
kcave@psych.umass.edu
http://people.umass.edu/kcave/

Abstract: Some previous accounts of visual search have emphasized
covert attention at the expense of eye movements, and others have
focused on eye movements while ignoring covert attention. Both
selection mechanisms are likely to contribute to many searches, and a
full account of search will probably need to explain how the two interact
to find visual targets.

Eye movements are an important part of many laboratory search
tasks, and most real world search tasks. A complete account of
visual search and visual attention will require an explanation of
how eye movements are guided and how they contribute to selec-
tion. Furthermore, the ability to track eye movements has led to a
succession of new insights into how attention is controlled. There
are many examples, but one is Olivers et al.’s (2006) work investi-
gating the working memory representations guiding search.
Future eye tracking studies will almost certainly produce valuable
new insights. Thus, in terms of both theory and method, eye
movements have played a key role, and will continue to do so.

In the target article’s framework , eye tracking data are com-
bined with assumptions about the functional viewing field
(FVF), the area within the visual field that is actively processed.
The FVF is assumed to be small in difficult visual tasks, so that
attentional processing during a single fixation is confined to a
small region, and many fixations are necessary to search through
a large array. The FVF can be expanded for easier tasks, allowing
them to be completed with fewer fixations that are farther apart.
As noted in the target article, the concept has been around for
some time, but nonetheless it is difficult to demonstrate experi-
mentally that the FVF is actually adjusted during search as Hulle-
man & Olivers (H&O) suggest ; it cannot be measured as
straightforwardly as tracking eye movements. However, H&O
point out that evidence from gaze-contingent search experiments
(Rayner & Fisher 1987; Young & Hulleman 2013) provide good
evidence that information is being taken in from smaller regions
in more difficult tasks. The FVF concept has also been useful in
interpreting attentional phenomena other than search. For
instance, Chen and Cave (2013; 2014; 2016) found that patterns
of distractor interference that did not fit with perceptual load
theory (Lavie 2005) or with dilution accounts (Tsal & Benoni
2010; Wilson et al. 2011) could be explained by assuming that

more difficult tasks induce subjects to adopt a narrower FVF (or
as it is called in those studies, attentional zoom).
Thus, I agree on the importance of combining eye tracking

data with assumptions about variations in FVF to build accounts
of visual search. It is also clear that attentional theories need to
be able to explain search in scenes that are not easily segmented
into separate items. Earlier theories were clearly limited in these
respects, in part because they were originally formulated at a
time when it was more difficult to track eye movements.
However, the proposed framework has other limitations. It
appears to be built on the assumption that once the FVF size
is set, there is nothing else for covert attention to do. That
seems surprising, given the abundant evidence that covert atten-
tion can select locations based on color, shape, and other simple
features within a fixation (Cave & Zimmerman 1997; Hoffman &
Nelson 1981; Kim & Cave 1995). This selection can be done rel-
atively quickly and efficiently (Mangun & Hillyard 1995). I am
not trying to argue that attentional selection is fundamentally
limited to one item at a time, but it is hard to believe that
covert selection would not be employed during search to lower
the processing load and limit interference within each fixation.
In fact, shifts in covert attention can be tracked from one hemi-
sphere to the other in the course of visual search (Woodman &
Luck 1999). Given that covert attention can be adjusted more
quickly than a saccade can be programmed and executed, it
should be able to contribute substantially in investigating poten-
tial target regions and in choosing the next saccade, as suggested
by a group of studies including Deubel and Schneider (1996),
and Bichot et al. (2005).
Over the years, many attention researchers have tried to study

visual search by focusing on covert attention and ignoring eye
movements, while others have tried to focus on eye movements
while ignoring covert attention. If the H&O framework is truly
to be a hybrid approach, it seems that it should allow the possibil-
ity that many searches are accomplished through an interaction
between eye movements and covert attention.
In considering the history of attention research, it is worth

noting that the idea that attention can be adjusted between a
broad distribution and a narrow focus has been explored in con-
texts other than Sanders’ (1970) discussion of FVF mentioned
in the target article. There is, of course, Eriksen and St. James’
(1986) zoom lens analogy, but perhaps even more relevant for
this discussion is Treisman and Gormican’s discussion of how
attention makes information about stimulus location available.
Here is their description:

Attention selects a filled location within the master map and thereby
temporarily restricts the activity from each feature map to the features
that are linked to the selected location. The finer the grain of the scan,
the more precise the localization and, as a consequence, the more accu-
rately conjoined the features present in different maps will be. (Treis-
man & Gormican 1988, p. 17)

Although they do not explicitly refer to the functional field of view,
it seems they had a similar concept in mind, as discussed in Cave
(2012).
Another aspect of this framework is the move away from visual

input that is organized into separate items. The motivation for this
is clearly spelled out, but what is not explained is how the concept
of object-based attention fits into this framework. There are some
circumstances in which visual selection is apparently not shaped
by the boundaries defining objects and groups (Chen 1998; Gold-
smith & Yeari 2003; Shomstein & Yantis 2002), but they are rare,
and the object organization of a display often affects attentional
allocation even when it is not relevant to the task (Egly et al.
1994; Harms & Bundesen 1983). Is the claim in the target
article that object and group boundaries play no role in visual
search, even though their effects are difficult to avoid in other
attentional tasks?
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Searching for unity: Real-world versus
item-based visual search in age-related eye
disease
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Abstract: When studying visual search, item-based approaches using
synthetic targets and distractors limit the real-world applicability of
results. Everyday visual search can be impaired in patients with common
eye diseases like glaucoma and age-related macular degeneration. We
highlight some results in the literature that suggest assessment of real-
word search tasks in these patients could be clinically useful.

Visual search is an important everyday visual function. Many labo-
ratory studies of visual search use synthetic targets and distractors.
Such experiments are somewhat removed from the holistic
approach needed to find a face in a crowd, search for an exit sign
at an airport or locate a favourite cereal on the supermarket
shelf. So we agree with Hulleman & Olivers’ (H&O’s) contention
that “item-based approaches limit the real-world applicability of
results from the lab” (sect. 4.1, para. 1). H&O discuss two real-
world applications of visual search: radiology and airport security.
In this commentary we highlight search as an impaired everyday
visual function in people with age-related eye disease. We speculate
on how this might be best assessed with the idea of bringing visual
search out of the lab and into clinical research, focussing on open
angle glaucoma and age-related macular degeneration (AMD),
two of the most common causes of visual impairment worldwide
(Lamoureux et al. 2008). Glaucoma is typically associated with
peripheral vision loss, whilst AMD causes loss of central vision.

Most studies of visual search in age-related eye disease used an
item-based approach (for example, Jacko et al. 2000; 2001), yet
examples taking a more real-world approach are emerging. We
investigated visual search in people with glaucoma using two com-
puter-based tasks (Smith et al. 2011), one item-based task requir-
ing participants to identify a target from an array of distractors,
and another more real-world task requiring participants to find
everyday items in digital photographs of indoor and outdoor
scenes. Participants with glaucoma exhibited longer average
search times than healthy peers for the real-world task, whilst
search times were not significantly different between the two
groups for the item-based task. These results support the notion
that item-based search tasks are not relatable to real-world applica-
tions. A further study (Smith et al. 2012), investigating eye move-
ments during the same real-world visual search task, reported a
reduction in saccade frequency in people with glaucoma compared
with healthy peers. Furthermore, amongst participants with glau-
coma, those who made more saccades per second were quicker
in finding the real-world targets. These results indicate that eye-
movement behaviour is of importance when considering visual
search performance of people with age-related eye disease, and
were supported by a study of similar design when detecting faces
(Glen et al. 2013). These findings align with H&O’s proposition
that fixation count is a critical factor in visual search behaviour.

Fixation count has been investigated in real-world search tasks
in AMD.Most visual search research in AMD has been conducted
using artificial arrays (for example, searching for a letter T
amongst distractors in the form of the letter L) and participants
with simulated scotomas (for example Bertera 1988; Coeckel-
bergh et al. 2002; Cornelissen et al. 2005; Geringswald et al.
2012; 2013; Kuyk et al. 2005; MacKeben & Fletcher 2011;
Murphy & Foley-Fisher 1988; 1989). These approaches allow
for more controlled experimental design, yet simulated scotomas

may not be entirely realistic (Harvey & Walker 2014; Schuchard
et al. 1999). One method of simulating central scotoma uses
contact lenses with a central opacity, which cause reduced
retinal illumination, leading to worsening in visual acuity and con-
trast sensitivity (Butt et al. 2015). A gaze-contingent simulation of
scotoma, incorporating eye tracking, is likely to provide better
scotoma simulation (Butt et al. 2015); we have used this in a
hazard search task in driving (Glen et al. 2015). Results were
useful, but simulation cannot capture the real experience of
patients, where self-reported perception and description of
scotoma varies enormously (Crabb et al. 2013). A few studies
have investigated real-world visual search in actual patients with
AMD; for example Thibaut et al. (2015) reported individuals
with AMD exhibit higher saccade frequencies, shorter fixation
durations and longer scan paths compared with those without
AMD during visual search. Aspinall et al. (2014) found fixation
count to be a useful marker of situations subjectively classed as
“difficult” by individuals with AMDwhen assessing eye movement
behaviour whilst watching videos of ambulatory journeys. Simi-
larly, Geruschat et al. (2006) investigated gaze behaviour during
street crossing and reported higher fixation count during more dif-
ficult/visually demanding parts of the task. Seiple et al. (2013)
observed people with AMD whilst exploring faces and reported
fixation count for internal facial features (eyes, nose, and
mouth) to be higher for controls than for individuals with AMD.
All of these tasks transcend the traditional item-based search.

Studies of everyday visual search have real clinical implications.
Visual search in people with visual impairment has been suggested
as a predictor for mobility and performance of other daily activi-
ties (Kuyk et al. 2005). There is evidence for the effectiveness
of eye movement training on visual search in congenital prosopag-
nosia (Schmalzl et al. 2008), following brain damage (Bouw-
meester et al. 2007), and for improved visual search and
mobility performance in people with visual impairment of
ocular origins following repeated practice of an item-based
search task (Kuyk et al. 2010; Liu et al. 2007). These types of find-
ings could lead to interventions and alternative approaches to
management of patients. Potential also exists for development
of tests for detecting and monitoring eye disease by using visual
search in both item-based (Loughman et al. 2007) and real-
world (Crabb et al. 2014) scenarios.

An article published nearly 30 years ago about tumour detec-
tion using visual search (Nodine & Kundel 1987) states that
“detecting an object that is hidden in a natural scene is not the
same as detecting an object displayed against a background of
random noise.” Research in this area ought to bridge the gap
between lab-based testing and the real world. H&O have made
an important step towards unifying some of the theory of visual
search. We anticipate this will stimulate practical studies that
may lead to better understanding of visual search in people with
age-related eye disease. In turn we speculate that this will have
implications for rehabilitation, and potentially lead to develop-
ment of new tests for monitoring age-related eye disease.

“Target-absent” decisions in cancer
nodule detection are more efficient than
“target-present” decisions!

doi:10.1017/S0140525X16000066, e136
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Abstract: Many parts of the medical image are never fixated when a
radiologist searches for cancer nodules. Experts are able to use
peripheral vision very efficiently. The size of the functional visual field
appears to increase according to the level of expertise. However,
searching a medical image diverges, in a puzzling way, from the typical
search for a target feature in the laboratory.

There has been little change in the proportion of medical decision
errors in radiology over the last 60 years, despite substantial
advances in technology. The field has not succeeded in capturing
or understanding the fundamental properties of visual search and
the allocation of visual attention of the expert radiologist, nor in
translating the essential search skills into training programs. We
therefore welcome this work, in the hope that a new bridge will
be developed that will connect visual science with this radiological
challenge. As Hulleman & Olivers (H&O) state, the fields of
medical imaging visual search “have been underserved by item-
based models (or any form of overarching theory of search…)”
(sect. 6.6, para. 7). What constitutes an “item” in the medical
image is not at all obvious. H&O suggest that the focus on the
individual search items should now give way to a greater emphasis
the properties of the functional visual field (FVF).

There is some evidence from our own work that this approach is
relevant to visual search with medical images. In tasks where we
have conducted eye-tracking experiments on groups with differing
levels of expertise, we found that experts will typically make fewer
fixations than novice observers. This happens for a relatively
straightforward task such as fracture detection in bones (Donovan
et al. 2005) and also in more complicated tasks, such as chest radio-
graphs with many potential “items” or structures which resemble
pathology. We have demonstrated distinct differences between
radiologists (experts), radiographers (pre- and posttraining in
chest radiograph interpretation) and novice observers when search-
ing for lung nodules in chest radiographs. Experts find many more
lung nodules while generating fewer fixations and larger saccadic
amplitudes (see Manning et al. 2006). This supports the idea that
the FVF is modifiable and does change according to the level of
expertise. The work also sheds some light on the timescale of this
learning or plasticity. After six months of training the number of fix-
ations of the radiographers had decreased compared with their pre-
training levels but had not reached that of the expert radiologist
(see Table 1). Importantly, as well as making fewer fixations there
was a more uniform distribution of fixations across all regions of
the chest radiograph by the experts, suggesting that once the
FVF has adapted to the task as a result of training, it is applied con-
sistently across the medical image.

More direct evidence of modifications to FVF could be explored
with gaze-contingent display paradigms to isolate the expertise-
dependent changes in visual search from the benefits (and costs)
of initially processing the entire scene (Litchfield & Donovan
2016). The link of fixations with the speed of RTs points to one of
the hallmarks of expertise – that experts are able to find targets

faster and with fewer fixations than novices (Reingold & Sheridan
2011). Another hallmark of expertise, which is best confirmed
using gaze-contingent paradigms, is that the perceptual span
increases as a function of expertise (Charness et al. 2001; Kundel
et al. 1984; Rayner 2009). Simple RT slopes have not helped us to
understand why so many cancers are missed in medical imaging;
therefore, we appreciate the central role of the FVF in this concep-
tual model. Unpacking the dynamic nature of FVF as a function of
task and expertise may yield greater insight into this process.
However, we see an area of concern: The model replicates the

conventional finding that target-present decisions are conducted
more quickly than target-absent decisions (in medical images,
“target-absent” would be equivalent to the true negative images –
i.e., images where no cancer modules are present). H&O state
“…all models of visual search, including the framework pre-
sented here, seem much better at describing target-present
trials than target-absent trials” (sect. 6.6, para. 6). In our study
of chest X-rays where some films showed cancerous nodules
and some did not, the target-absent decisions (true negatives)
were faster than the true positive decisions (see Manning et al.
2005). Interestingly, this applied to both the experts (radiologists)
and the novices. Our concern therefore goes beyond the lack of
an explicit stop search signal. There appears to be a fundamental
reversal in the normal pattern of target-absent versus target-
present decisions when visual search is conducted with a chest
X-ray.
Recently, Litchfield & Donovan (2016) used a gaze-contingent

preview to explore the effects a preview window in the domain of
a naturalistic scene versus a medical image for radiologists and
novices. The work found a clear dissociation between the two
domains, with a strong preview benefit on the visual search perfor-
mance for naturalist scenes, but no benefit with medical images
for either group. Thus, our earlier and more recent work urges
caution in extrapolating across the different search domains of
feature search tasks, naturalist scenes and medical images. This
suggests the bridge that the authors are seeking to construct will
be more complex than they envisaged.

Why the item will remain the unit of attentional
selection in visual search

doi:10.1017/S0140525X16000078, e137
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Abstract: Hulleman & Olivers (H&O) reject item-based serial models of
visual search, and they suggest that items are processed equally and
globally during each fixation period. However, neuroscientific studies
have shown that attentional biases can emerge in parallel but in a
spatially selective item-based fashion. Even within a parallel architecture
for visual search, the item remains the critical unit of selection.

Table 1 (Crawford et al.). Mean number of fixations per zone (n = 27 X-ray films)

Chest Zone Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Total SD

Radiologists 16.3 18 19.5 20.1 15.6 16 18.5 19.9 19.6 14.3 13.5 18 18 17.3 245 2.09
Radiographers Post-training 26.4 23.6 25 32.2 29.2 22.6 31 29 30.2 26.8 19.6 31.6 31.4 29.6 388 3.84
Radiographers Pre-training 31.8 28.6 30 32.2 29.5 22.6 30 29 30 26.8 19.6 31 32 29.8 403 3.6
Novices 30.3 28.5 29 29.8 29.6 23 30 30 31 27 20 30 30 31 399 3.18

Data from Manning et al. (2006).
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Leading theories of visual search postulate that search targets are
found by deploying attention sequentially to individual objects
(items). Hulleman & Olivers (H&O) reject such serial item-
based accounts and propose an alternative where fixations
replace items as the conceptual unit of visual search. In their
nascent computational model, individual search episodes start
once the eyes have reached a new fixation location. Parallel pro-
cessing of all items within a functional view field (FVF) results in
a decision about target presence/absence. If no target is found,
the eyes move to a different location, and a new search episode
commences. This model performs remarkably well in simulating
search slopes and the variability of search performance across dif-
ferent types of search tasks. However, questions remain about the
mechanisms proposed for localizing targets and discriminating
them from irrelevant objects during individual fixations. For
example, fixation duration is constant at 250 ms, and the visual
slate is wiped clean during each new eye movement, and therefore
the decision about the presence of a target within the FVF has to
be made within this brief time window. Results from attentional
dwell time and attentional blink experiments suggest that target
identification processes may require at least 300–500 ms, and
may therefore extend in time beyond individual fixation periods.

At a more fundamental level, it is difficult to see how objects
can be replaced as conceptual units in visual search, given that
the visual world is made up of objects, and finding a particular
target object is the goal of a typical search task. H&O claim that
processing with a fixation period is not item-based, because “all
items are in principle selected and processed simultaneously”
(sect. 6.3) by mechanisms that compute global area activations
and pooled summary statistics across the FVF. This is plausible
for easy search tasks where targets can be found on the basis of
local feature discontinuities (singleton detection), and also for
non-search tasks that require the rapid extraction of the gist of a
scene. What remains unclear is whether such global area-based
mechanisms can detect the presence or absence of targets even
in moderately difficult search tasks where no diagnostic low-
level saliency signals are available and distractors share features
with the target. Furthermore, the spatially non-selective group-
based account proposed by H&O seems at odds with neuroscien-
tific insights into the control of visual search. During search for
targets with known features, biases of visual processing towards
target-matching objects emerge rapidly within the first 200 ms
after the presentation of a search display, even outside of the
current attentional focus (e.g., Bichot et al. 2005). These biases
are elicited in a spatially specific fashion in retinotopic visual
areas that match the location of possible target objects. They
can initially be triggered at multiple locations across the visual
field, but gradually become more spatially focused, and may even-
tually result in the selective activation of one particular object rep-
resentation (see Eimer 2014; 2015, for a more detailed discussion,
and Duncan 2006, for related ideas on object-based integrated
competition mechanisms in visual search). The important point
here is that such task-dependent attentional biases of visual pro-
cessing emerge in spatial visual maps that represent candidate
target objects at particular locations. In this fundamental sense,
attentional selection mechanisms and their neural basis remain
irreducibly item-based. Crucially, this type of item-based selectiv-
ity does not imply serial selection. Spatially selective processing
biases for target-matching objects can emerge in parallel across
the visual field (e.g., Bichot et al. 2005; Saenz et al. 2002), and
multiple target objects at different locations can be selected simul-
taneously and independently (e.g., Eimer & Grubert 2014).

Within the framework proposed by H&O, it may be useful to dis-
tinguish between the guidance of spatial attention during individual
fixation episodes, and the guidance of eye movements. The selec-
tion of new fixation locations might indeed be informed by global
area-based computations that are performed in parallel outside of
the currently fixated region, and provide information about the like-
lihood of a target being present elsewhere in the visual field. In con-
trast, attentional control processes within the FVF during a fixation

episode operate via spatially selective and thus essentially item-
based modulations of visual processing. In fact, H&O acknowledge
the existence of such spatial biases that gradually become more
item-based for the case of compound search where target-defining
and response-relevant features differ. Here, “a global search for the
target-defining feature may be followed by a local search for the
response-defining feature.” The question remains whether this
type of item-based spatially selective attentional control is the
exception or the rule during visual search. Although some real-
world visual search tasks (e.g., the scanning of mammograms or
security X-ray images) do not involve the well-defined objects
that are used in lab-based search studies, one could argue that
even here, search is still guided in a spatially selective fashion by
image features that are relevant for the task at hand.

The new fixation-based search model proposed by H&O is
useful not only because of its power to simulate behavioural
results, but also because it invites us to think differently about
visual search. Serial selection models have dominated the field
for decades, and alternative concepts are sorely needed. H&O
provide excellent arguments for abandoning strictly sequential
item-by-item accounts of visual search. However, in their endeav-
our to reject serial selection, they may have thrown out the item-
based baby with the serial bathwater. Attentional processes in
visual search may indeed operate in a largely parallel fashion,
but the item will remain a primary unit of selection.

Fixations are not all created equal: An
objection to mindless visual search

doi:10.1017/S0140525X1600008X, e138
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Abstract: This call to revolution in theories of visual search does not go
far enough. Treating fixations as uniform is an oversimplification that
obscures the critical role of the mind. We remind readers that what
happens during a fixation depends on mindset, as shown in studies of
search strategy and of humans’ ability to rapidly resume search following
an interruption.

We welcome Hulleman & Olivers’ (H&O’s) invitation to abandon
the display item as the fundamental unit of visual search. There is
now considerable evidence – some of which we have contributed
to (Enns & Kingstone 1995; Fecteau et al. 2000; Roggeveen et al.
2004; van Zoest et al. 2006) – that display items cannot be consid-
ered in isolation from the items around them, nor from the limits
of the observer’s functional viewing field (FVF). However, H&O’s
call to revolution does not go far enough because they simply
replace one operational unit (the experimenter-defined item in
a search display) with another (the observer’s FVF, as indexed
by fixations). Both of these efforts to ground theories of search
in easily observable third-person variables neglect the most impor-
tant factor: the observer’s mind. It is our view that what happens
behind the observer’s eyes is more important than what happens
in front of them (the display items) or even in them (the FVF).

Fixations during visual search cannot be considered in isolation;
they are always involved in a trading relationship with saccades.
That is, at any given moment the observer is engaged in strategic
decisions (albeit implicit ones) to keep their eyes still (allowing for
seeing, the ability to distinguish targets from non-targets) or to
move them (allowing for looking, the acquisition of new informa-
tion from outside of the current fixation). Similar to agents in clas-
sical reinforcement learning models (Sutton & Barto 1998), who
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trade off between exploiting currently available resources and
exploring for novel resources, visual searchers cycle between
seeing the information in their current fixation and looking to a
new location. In typical search tasks this cycle is repeated 3–4
times per second, which is consistent with H&O’s decision to
model fixations as lasting 250 ms. Yet setting this average time
as a constant conceals important variability.

We recently manipulated the mental strategies of participants
by randomly assigning them to either search passively, by giving
them instructions to “let the target pop into your mind,” or to
search actively, by telling them to “deliberately direct your atten-
tion.” We found a passive response time advantage, as in previous
studies (Smilek et al. 2006), and showed that this stemmed from
the inherent trade-off between seeing and looking (Watson et al
2010). Passively instructed participants made fewer fixations of
longer duration, and once they fixated the target region for the
first time, they made fewer subsequent fixations, responding
more quickly. This suggests that they placed a greater emphasis
on seeing rather than looking, and so were better able to
process the target. These differences may not reflect differences
in FVF: passively instructed participants were no more likely to
fixate closer to the center of the display, nor further away from
individual items, either of which would have allowed them to
take advantage of a larger FVF.

One of the most striking observations in Watson et al. (2010) is
that there is more than one way to succeed in visual search. Even
after trimming participants from each group to equate overall
speed and accuracy, passively instructed participants made fewer
fixations separated by larger saccades. This means it is possible to
trade the higher information resolution of seeing with the greater
information acquisition of looking, without affecting overall success.

Another demonstration of the critical importance of mind
comes from studies of rapid resumption of visual search, in
which participants are able to accurately respond very rapidly
(within 100–400 ms) to a display that has been re-presented fol-
lowing a brief interruption (Lleras et al. 2005). To be as accurate,
the same responses to the first look at a display take more than
500 ms. Successful rapid resumption of an interrupted search
depends on participant’s forming a mental prediction of the
target’s response-relevant features and location based on a first
look at the display. When these features or location change after
the first look, but all other aspects of the display remain constant,
rapid resumption is eliminated (Lleras et al. 2007). The prediction
is more likely to be made when fixations are located close to the
target, but it turns out that fixation location is not the determining
factor either. When gaze-contingent displays are used, such that
the target is always presented at fixation, rapid resumption is
impossible (van Zoest et al. 2007). Once again, differences in
the mind lead to differences in the processing that occurs
during a fixation. If a correct prediction about the target has
been made during the first glance, the second glance enables
rapid responses; if this prediction has not been made, the
search must be started over. This critical predictive aspect of
visual search seems absent from H&O’s account.

The role of fixations depends on mind-set, both between-sub-
jects (as shown by our instructional study) and within-subjects
(as shown by rapid resumption studies). H&O’s account treats fix-
ations as uniform, which is a serious oversimplification.

We conclude by reiterating three points Hochberg (1968) made
long ago, recently updated in a series of studies in Peterson et al.
(2006). First, because every percept enters the mind through
piecemeal views, a theory of perception must be about the
mind’s representation, not its trigger (the stimulus), nor its
conduit (the eye). Second, as Hochberg liked to put it, “unlike
objects themselves, our perception of objects is not everywhere
dense” (Hochberg 1982, p. 214). He contributed numerous dem-
onstrations of the selectivity of perception, both in its overt actions
(fixations) and in its covert processing (attention). Third, there is
no perception in a glance that is divorced from prior mental rep-
resentation. This recursive aspect of perception means that vision

is as much influenced by what lies in the mind as what lies in the
eye of the beholder.

Contextual and social cues may dominate
natural visual search

doi:10.1017/S0140525X16000091, e139
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Abstract: A framework where only the size of the functional visual field of
fixations can vary is hardly able to explain natural visual-search behavior. In
real-world search tasks, context guides eye movements, and task-irrelevant
social stimuli may capture the gaze.

Can visual search be explained by a model with only one free
parameter, the size of the functional visual field (FVF) of a fixation,
as suggested by Hulleman &Olivers (H&O)? Considering fixations,
rather than individual items, as the primary unit of visual search
agrees with the tight connection between eye gaze and information
retrieval. H&O demonstrate that their framework successfully cap-
tures the variability of reaction times in easy, medium and difficult
searches of elementary visual features. However, beyond laboratory
conditions (“find a specific item among very similar distractors”),
visual search strategies can hardly be explained by such a simple
model because the search space is poorly specified (e.g., “Where
did I leave my keys?”, “Is my friend already here?”), and the
search strategy is affected, for example, by experience, task,
memory, and motives. Moreover, some parts of the scene may
attract attention and eye-gaze automatically because of their
social and not only visual saliency.
In real-life situations, the search targets are not a priori evenly

distributed in the visual field, and the task given to the subject will
affect the eye movements (Neider & Zelinsky 2006; Torralba et al.
2006; Yarbus 1967). Moreover, the scene context can provide
spatial constraints on the most likely locations of the target(s)
within the scene (Neider & Zelinsky 2006; Torralba et al. 2006).
The viewing strategy is also affected by expertise: experienced
radiologists find abnormalities in mammography images more effi-
ciently than do less-experienced colleagues (Kundel et al. 2007);
experts in art history and laypersons view paintings differently
(Pihko et al. 2011); and dog experts view interacting dogs differ-
ently than do naïve observers (Kujala et al. 2012). Moreover,
the fixation durations vary depending on the task and scene:
Although all fixations may be of about the same duration for
homogeneous search displays, short fixations associated with
long saccades occur while exploring the general features of a
natural scene (ambient processing mode) and long fixations with
short saccades take place while examining the focus of interest
(focal processing mode; Unema et al. 2005).
H&O suggest that the concept of FVF would allow semantic

biases in visual search by accommodating multiple parallel
FVFs – for example, a small FVF for the target object and a
larger FVF for recognizing the scene. This extension might
account for processing within the fixated area, but could it also
predict saccade guidance? Predicting eye movements occurring
in the real world would require a comprehensive model of the
semantic saliency of the scene, which is really challenging. That
said, the recent advances in neural network modeling of artificial
visual object recognition (Krizhevsky et al. 2012) could facilitate
the modeling of the semantic and contextual features that guide
the gaze (Kümmerer et al. 2014).
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Finally and importantly, social cues strongly affect natural visual
processing. Faces and other social stimuli efficiently attract gaze
(Birmingham et al. 2008; Yarbus 1967), insofar as a saccade
toward a face can be difficult to suppress (Cerf et al. 2009;
Crouzet et al. 2010). Thus, the mere presence of a task-irrelevant
face can disrupt visual search by attracting more frequent and
longer fixations than do other distractors (Devue et al. 2012).
Such a viewing behavior contrasts with the conventional search
tasks that become more difficult when the resemblance of the dis-
tractors and target increases. Whereas faces capture attention
(and gaze) in healthy subjects, autistic individuals are less dis-
tracted by social stimuli in the search scene (Riby et al. 2012)
and experience reduced saliency in semantic-level features, espe-
cially in faces and social gaze, during free-viewing of natural
scenes (Wang et al. 2015). Altogether, social stimuli have such a
central role in human behavior and brain function (Hari et al.
2015) that they should not be neglected in models aimed to
explain natural visual-search behavior. Peripheral vision can
provide effective summary statistics of the global features of the
visual field (Rosenholtz 2016), and thus social stimuli, such as
faces, outside of the foveal vision could significantly affect the
visual search.

Face recognition represents a special case of visual search – a
natural search task could be, for example, to find a friend among
a crowd of people. For (Western) faces, the optimal fixation loca-
tion is just below the eyes (Peterson & Eckstein 2012), and two fix-
ations can be enough for face recognition (Hsiao & Cottrell 2008)
for isolated face images. Whether the same is true for faces in their
natural context remains to be seen. Overall, it appears that the sac-
cades to faces and to scenes are consistent across subjects during
the initial viewing and become less consistent during later saccades
(Castelhano & Henderson 2008). In addition, the initial saccades
are consistent across cultures, with saccade endpoints reflecting
the optimal fixation locations in face identification tasks (Or et al.
2015). These findings raise interesting questions related to the
neural underpinnings of natural visual search: How does the guid-
ance of the initial saccades differ from later saccades? At what level
of cortical processing does the cultural background or expertise
affect the saccade guidance?

In conclusion, we doubt that “an overarching framework of
visual search” can be built without implementing effects of con-
textual and social cues. Building a model that can predict an
observer’s eye movements during natural search tasks in real-
world visual environment remains a challenge.

Until the demise of the functional field of view
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Abstract: Hulleman & Olivers (H&O) make a much-needed stride
forward for a better understanding of visual search behavior by rejecting
theories based on discrete stimulus items. I propose that the framework
could be further enhanced by clearly delineating distinct mechanisms
for attention guidance, selection, and enhancement during visual search,
instead of conflating them into a single functional field of view.

The target article presents a laudable effort to depart from con-
ceptual analyses of visual search that are based primarily on dis-
crete stimulus items. By using fixations as the central unit, the
authors propose a significant paradigm shift for core research on
visual search. As the authors note, this idea has been proposed
before. In fact, it is central to most computational theories and

models of visual attention. Indeed, the standard test for saliency
map models consists of measuring their ability to predict human
fixation locations in a wide range of tasks (Borji et al. 2013), includ-
ing visual search (e.g., Ehinger et al. 2009). A framework based on
fixations promises an understanding of visual search behavior that
is more focused on perceptual and motor mechanisms than on
external stimulus composition.

Computational models of attention – applicable not only to
visual search but also to virtually any visually guided behavioral
task – often distinguish among at least three facets of visual atten-
tion (Itti & Borji 2013):

1. Guidance: What computations are involved in decid-
ing where or what in a scene to attend to next? This
includes bottom-up or stimulus-driven guidance signals,
such as visual salience, and top-down guidance signals,
for example related to spatial or feature-based cueing.
2. Selection: How is a fraction of the visual input sepa-

rated out from other incoming visual signals so that it can
be processed in more detail?
3. Enhancement: How are selected (attended to) visual

items processed differently – usually better by some
measure such as enhanced contrast sensitivity or better dis-
crimination threshold – than nonselected (unattended)
items?

All three aspects have been studied extensively in the electro-
physiology, psychophysics, and modeling literature (for reviews,
see, e.g., Allport et al. 1993; Borji & Itti 2013; Carrasco 2011;
Desimone & Duncan 1995; Driver & Frith 2000; Itti & Koch
2001; Reynolds & Desimone 1999; Robertson 2003). The target
article authors deliberately sidestep guidance in their simulations
and focus on selection, in particular through the concept of func-
tional field of view (FVF), which is akin to an attention spotlight
(Crick 1984), and they omit enhancement.

The framework could be strengthened by clearly embracing the
idea of separate functional mechanisms (although possibly over-
lapping and using shared neural components) for guidance, selec-
tion and enhancement. Indeed, with a single FVF, the concepts of
scene gist and contextual guidance already seem to be a struggle
for the framework (sect. 6.2): Presumably, when starting a new
search over a natural scene, one would first need a wide FVF
for scene identification and to establish semantic guidance, then
switch to a smaller FVF during search. Thus, as the authors
concede, the FVF size is unlikely to be fixed as hypothesized in
the simulations, and may instead change before and possibly
during search. Even with a dynamic FVF, it is unclear whether
phenomena such as contextual guidance or cueing of search – in
natural or artificial scenes (Chun & Jiang 1998; Torralba et al.
2006) –would require the same FVF processing characteristics
as would be required to select and analyze items at the current fix-
ation. An FVF that can rapidly change size and functional form
presents little conceptual value as it is an unknown time-varying
entity. It becomes a liability for the framework because any unex-
plained phenomenon could be attributed to some sudden change
in FVF size or processing form that one would be hard-pressed to
measure in real time.

Thus, one may need to split the concept of FVF into at least two
or three: possibly a broader FVF operating coarser or more stat-
istical processing might be necessary to compute a saliency map
around the current fixation and to integrate contextual informa-
tion broadly, to provide effective guidance of search. But a nar-
rower and more selective FVF may sometimes be needed for
selection, for example in difficult compound search. Enhancement
may require a different FVF as well, possibly even more tightly
wrapped around the selected items to reject background noise
within the selected region. All three might be required in
complex search scenarios (e.g., compound search on a noisy yet
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semantically meaningful natural scene background). Positing a
single FVF unnecessarily conflates guidance, selection and
enhancement. This is already evident in the second component
of the framework (sect. 5.2), where a target may be easy to
detect peripherally because of a distinctive feature but hard to
identify because of a more complex response-defining attribute.
The authors assume that a broad FVF should be deployed for
guidance of each fixation, followed by a switch to a narrow FVF
for selection and identification of items. As with contextual guid-
ance, this dynamic resizing essentially amounts to interlacing over
time two different FVFs, one for guidance and the other for selec-
tion. Because in addition to different sizes (which may themselves
be dynamic), these two FVFs might also have different processing
characteristics (e.g., with respect to crowding or lateral masking), I
suggest that decoupling the two into a guidance mechanism and a
selection mechanism might enhance the long-term usefulness and
robustness of the framework (and likewise for an enhancement
mechanism).

Electrophysiological and neuroimaging evidence supports, at
least in part, distinct mechanisms for guidance, selection, and
enhancement. In primates, including humans, guidance likely
recruits saliency mechanisms in the dorsal visual processing
stream (e.g., Itti & Koch 2001; Kusunoki et al. 2000), and
scene-level contextual mechanisms, for example in the lateral
occipital complex (area LOC; e.g., Preston et al. 2013). The
frontal eye fields (FEF) and ventral prearcuate (VPA) areas of
the prefrontal cortex are thought to provide goal-directed spatial
and feature-based modulation of guidance (Bichot et al. 2015).
Shrink-wrapping of receptive fields in the ventral processing
stream including inferotemporal cortex may serve selection and
enhancement of selected information (Desimone & Duncan
1995; Zhang et al. 2011).

Although the authors of the target article wish to remain at a
conceptual rather than algorithmic level, I believe that the best
route to avoiding possible conceptual ambiguities or conflating
between what should be distinct entities will have to be through
detailed computational implementation of the components of
this exciting framework.
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Feature integration, attention, and fixations
during visual search
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Abstract: We argue that mechanistic premises of “item-based” theories
are not invalidated by the fixation-based approach. We use item-based
theories to propose an account that does not advocate strict serial item
processing and integrates fixations. The main focus of this account is
feature integration within fixations. We also suggest that perceptual load
determines the size of the fixations.

The target article reviews a number of previous theories of visual
search and argues that a better understanding of visual search is

hampered by the assumption that individual items are central
units of visual search. To explain visual search behavior (VSB),
Hulleman & Olivers (H&O) propose a compelling alternative
framework in which fixations are central units of the VSB and
suggest that the demise of the item in visual search is impending.
We greatly appreciate this target article drawing attention to the
importance of fixations in visual search and to other ways of con-
ceiving visual search behavior, but we object to the proposition
that the item and item-based theories in explaining VSB are
flawed. In our opinion, whereas fixations are a necessary element
of the VSB, they are not sufficient for an integrative account of
visual search. We argue that both peripheral and central processes
contribute to the VSB and therefore an integrative account of the
VSB will include fixations as well as elements of the established the-
ories of VSB such as feature integration and attention. The authors
acknowledge that the theories they call “item-based” recognize the
existence of large amounts of parallel processing and that some of
these theories are not based on individual items. Therefore, it is
possible to consider these theories in ways other than strict serial
processing of items. H&O have claimed that “within fixations,
items are processed in parallel.”We reconsider this by highlighting
the role of attention in visual search. The obligatory relationship
between eye movement and attentional shifts in which eye move-
ment cannot be performed without the attentional shifts has long
been identified (Fischer 1987). Fixations occur to cluster items
together. We agree with the authors that subjects tend to
move their eyes because “covert search is much harder” (sect.
6.4, para. 2). However, we emphasize that within each fixation,
covert attention plays a critical role on serial processing of indi-
vidual items (Buschman & Miller 2009). In a recent study Marti
et al. (2015) used a unique strategy in which subjects had to
report their fixations in a search task. The results of self-
reports were then compared with the actual eye movements.
They showed that in some cases, subjects reported eye move-
ments that they had never made. They concluded that item
search was conducted by covert attention strategy and they
had probably reported covert shifts of attention as eye move-
ments. This indicates the importance of items in search strategy
within each fixation.
Regarding feature integration theory (FIT; Treisman & Gelade

1980), feature integration and fixations are reconcilable in our
proposal. H&O invalidate FIT as a viable account of VSB
because this theory has classically been used to advocate serial
processing of items arising from the conjunctions of different fea-
tures. Although conjunctions are necessary for full perception, it is
not necessary to perceive full conjunctions with a full map of fea-
tures that lead to serial processing of the items. Feature extraction
takes place at several levels and it does not need complete scrutiny
at every level as there is evidence that humans can recognize
degraded images such as faces (Gilad-Gutnick & Sinha 2012).
In our account, at the first fixation, incomplete feature maps are
made which gives a gist of the whole scene. These maps are
made randomly, though the most salient features (Xiaodi et al.
2012) have a higher chance to enter these maps. Rather than con-
junctions that lead to a full perception of individual items, loose
conjunctions and clusters of similarities among features are
made (Oliva & Torralba 2006). Using these maps, parallel exclu-
sions and inclusions guide attention covertly or overtly to the
most informative areas of the visual scene. This guidance leads
to a more detailed map. At this level, more detailed (though
not necessarily complete) parallel feature maps are formed
within each fixation. Whenever an item or a number of items
passes a certain threshold of similarity with the template, those
individual items might be examined serially within the fixation,
which can lead to either a target-present response or continua-
tion of the search task. This is specifically true in the case of
real world situations such as searching for a lesion in a radio-
graphic image.
An important question is the size of each fixation or functional

viewing field (FVF). The extent of feature extraction/integration
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depends on the size of the FVF. H&O argue that the difficulty of
discriminating items determines the size of the FVF. We propose
that the fixation size is determined by the perceptual load. Follow-
ing earlier work of Kahneman and Treisman (1984), Lavie demon-
strated that perceptual load is the major determinant of the locus
of selection in visual attention (Lavie & Tsal 1994) and that per-
ceptual load is necessary for early selection (Lavie 1995). Accord-
ing to the load theory of attention, the scope of perception will be
stretched from the center of the fixation to the surrounding area to
the extent that the perception is loaded. It has to be noted that
although this is a theory of attention, unlike cognitive load, per-
ceptual load involves the early sensory system. To enable
feature integration, the size of the fixations is adjusted according
to the perceptual load of a group of items. In larger FVFs (e.g.,
initial fixation), the perceptual load is saturated with incomplete
feature extraction. In our account, fixations are a measure, not
central unit, of the feature integration at different levels.

In conclusion, H&O present a powerful case to support a
framework that unifies fixation-based studies of VSB. However,
their RT-based arguments to invalidate item-based theories of
VSB need to be revisited. We argue that perceptual load deter-
mines the size of the fixations and consequently the number of
the fixations. In a step towards an integrative account of the
VSB, we propose an account in which core elements of the
item-based theories hold and fixations are included.
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Cognitive architecture enables comprehensive
predictive models of visual search
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Abstract: With a simple demonstration model, Hulleman & Olivers
(H&O) effectively argue that theories of visual search need an overhaul.
We point to related literature in which visual search is modeled in even
more detail through the use of computational cognitive architectures
that incorporate fundamental perceptual, cognitive, and motor
mechanisms; the result of such work thus far bolsters their arguments
considerably.

Hulleman & Olivers (H&O) help move the study of visual
search in the right direction by promoting the idea of active
vision (Findlay & Gilchrist 2003), which emphasizes the role of
eye movements in visual search over a traditional emphasis on
covert shifts of attention; this also reflects a shift to eye movement
measures rather than response times as the relevant dependent
variables. Their paper incorrectly suggests, however, that a consid-
eration of visual objects as discrete psychological objects is prob-
lematic. The problem is not that items are involved, but rather
that most current theories assume a simplistic relationship
between number of items and reaction time that misrepresents
how visual capabilities are actually used in the task. Therefore,
for many stimuli and tasks such as searching for icons on a com-
puter screen (e.g., Fleetwood & Byrne 2006; Kieras & Hornof
2014), the goal is to identify a specific display object (e.g., by click-
ing on it) which implies that the search must be item-based at

some level, even though the subject might be processing multiple
visual objects simultaneously.

We believe that the actual theoretical problem that underlies
the issues pointed out by H&O is an impoverished theoretical
framework for how human perceptual, cognitive, and motor
mechanisms operate together in performing visual search.
Although their model demonstrates an approach that improves
on the status quo, the problem can be more thoroughly alleviated
by the use of an explicit computational cognitive architecture
foundation.

In an analogy with computer architecture, a computational cog-
nitive architecture such as ACT-R (Anderson & Lebiere 1998) or
EPIC (Meyer & Kieras 1997) proposes basic "hardware" mecha-
nisms for perception, cognition, and action, with task-specific
"software" in the form of production rules that provide a strategy
for how to perform the task with the architectural mechanisms. In
EPIC, the visual modules in fact already incorporate the func-
tional viewing field (FVF) concept that H&O promote. These
modules use functions from the psychophysical literature for the
detectability of visual properties based on object eccentricity
and size (e.g., Anstis 1974; Gordon & Abramov 1977; Virsu &
Rovamo 1979). Certain visual search results characterize the
memory stores for visual information (e.g., Henderson & Castel-
hano 2005; Kieras 2011; Peterson et al. 2001), and the oculomotor
module incorporates results from eye movement studies of the
speed and accuracy of saccades (e.g., Abrams et al. 1989; Harris
1995). The production rules comprising the cognitive strategy
specify how the human uses the perceptual, motor, and
memory resources to accomplish the task. For example, the strat-
egy determines which object should be fixated next based on the
task requirements and the available perceptual and memory infor-
mation, and what is to be done if the fixation has failed, such as
missing the targeted object. EPIC’s cognitive strategy represents
explicitly the cognitive decisions that must be executed to com-
plete visual search tasks, the same sort of decisions that H&O
summarize in the “flow diagram of the conceptual framework”
shown in their Figure 2.

Unlike simple ad hoc models, a computational cognitive archi-
tecture serves to synthesize many empirical effects in a stable,
reusable fashion in the architecture components, and because
the strategy is represented separately, it is easy to build a model
for a different task, or to explore the consequences of different
strategies for the same task, all based on the same architectural
assumptions. The resulting simulation models provide a computa-
tional version of the active vision concept itself and can be applied
to practical problems such as analyzing and improving the design
of computer interfaces and multimodal interaction (Halverson &
Hornof 2011; Hornof 2004; Kieras & Hornof 2014; Kieras &
Meyer 1997).

However, a lesson of cognitive architecture modeling is that
even in simple tasks, subjects can adopt subtle strategies that
can obscure the underlying mechanisms unless taken into
account (Kieras & Meyer 2000; Meyer & Kieras 1999; Zhang &
Hornof 2014). In our models of visual search, the task strategy
plays a role in determining the object to be next fixated and,
when there are no clear candidates for the next saccade, there
are a variety of possible decisions that could be made, and these
decisions affect the predicted search performance.

Unless some effort has been made to control subject strategies
in the experiment, the data themselves may be an arbitrary
mixture of idiosyncratic performance by each subject – and this
strategy indeterminism can happen even in seemingly simple
tasks (Meyer & Kieras 1999; Kieras & Meyer 2000; Schumacher
et al. 2001). Modeling such data in the aggregate typically requires
either ad hoc or unrepresentative strategies, but the alternative of
identifying individual subject strategies in normal-size data sets is
extremely difficult. Instead, providing explicit incentives to the
subjects can lead to more stable strategy choices and thus data
that reflect underlying mechanisms much more clearly (e.g.,
Thompson et al. 2015). Thus, we believe that task strategy
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needs to be considered more explicitly both in experiments and
models about visual search.

We applaud the authors for their effort to further promote gaze
fixations and the FVF as first-class entities in models and theories
of visual search. We believe that the development of computa-
tional cognitive architecture models provides a promising
pathway to achieve the goals they have expressed. We encourage
other researchers to embrace these positive developments but to
also go further and (a) more explicitly consider the role of cogni-
tive strategy in visual search and (b) as hinted by H&O, collect the
empirical data needed to describe more completely and paramet-
rically how visual properties are detected based on object eccen-
tricity, size, and density (building on Anstis 1974; Bouma 1970;
Engel 1977; Gordon & Abramov 1977; Virsu & Rovamo 1979).
Both are needed for a comprehensive predictive model of visual
search.

How functional are functional viewing fields?
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Abstract: Hulleman & Olivers’ (H&O’s) proposal is a refreshing addition
to the visual search literature. Although we like their proposal that
fixations, not individual items should be considered a fundamental unit
in visual search, we point out some unresolved problems that their
account will have to solve. Additionally, we consider predictions that can
be made from the account, in particular in relation to priming of
visual search, finding that the account generates interesting testable
predictions.

Hulleman & Olivers’ (H&O’s) target article is a refreshing addi-
tion to the visual search literature. We agree with them that
there is need for a more flexible conception of visual search,
and that eye movements should not be considered a nuisance
factor. They are, however, not the first to point out problems
with what they call the item-based approach, where slopes of
set-size and response times take center stage. Concerns about tra-
ditional visual search approaches are raised in parallel models of
visual search (Eckstein 1998; Kristjánsson 2015; Palmer et al.
1993) showed how slopes are ambiguous measures of search
behavior; and Wang et al. (2005) have shown how even very diffi-
cult searches can yield flat slopes, calling for changed conceptions
of search. But as H&O rightly highlight, satisfactory replacements
to traditional approaches have not surfaced.

Functional viewing fields (FVF) play a central role in their
account. Although we think this approach is useful, we still feel
it comes up short on some important questions. Perhaps
against the authors’ intention, FVFs may conveniently describe
a continuum between easy search involving the whole visual
field (“parallel,” broad, shallow processing within saliency
maps) and item-based processing (“serial,” narrow but deeper),
similar to an “attentional window” (Belopolsky et al. 2007),
whose size scales with attentional load (Lavie et al. 2004). The
“parallel” versus “serial” dichotomy may no longer be useful for
developing new ideas (Kristjánsson 2015; Nakayama & Martini
2011). FVFs are spatially constrained, and so the concept may
encounter similar problems as spotlight metaphors. Attending
to multiple moving items (Cavanagh & Alvarez 2005), perceptual
grouping (Kerzel et al. 2012; Vatterott & Vecera 2015), or pre-
dictability (Jefferies et al. 2014) can shape or divide the atten-
tional window, arguing against the idea of a single FVF.
Additionally, whether items within spatially constrained FVFs
are processed in parallel is not clear. For example, priming
studies demonstrate that attention spreads unevenly between

targets and distractors within FVFs (Kristjánsson & Driver
2008). A single FVF (even with a dynamically changing size) is
therefore unlikely to explain nonuniform or spatially noncontigu-
ous attention distribution.
Sometimes H&O seem to try and explain the literature on

visual search rather than actual visual search and attention. One
example is that FVFs may be difficult to define operationally,
while they rather straightforwardly explain set-size effects. FVFs
are supposedly small in difficult search tasks, but determining
which tasks are hard seemingly requires set-size slopes, which
FVF size is supposed to account for. This is circular. H&O
discuss other factors influencing the size of FVF (e.g., distractor
heterogeneity), but whether FVFs add to the explanatory power
already provided by these factors is unclear. The proposal does,
in other words, not contain a clear way of predicting FVF size
except with already well-known tools.
According to H&O, set-size effects are explained with fixations,

and they explicitly assume no covert attentional shifts within
FVFs. Search where eye movements are not allowed should
therefore not yield such effects when distractors are isoeccentric.
But set-size effects persist when eccentricity is controlled for and
eye movements are eliminated, (e.g. Carrasco et al. 2001; Foley &
Schwarz 1998; Palmer et al. 1993). Rather, set-size effects might
reflect the discriminability of target versus distractors, which
relies on set-size, covert attention, and position within FVFs
(Anton-Erxleben & Carrasco 2013; Carrasco et al. 2001; Carrasco
& Yeshurun 1998). Importantly, if target location is pre-cued set
size effects are reduced (Carrasco et al. 2001; Foley & Schwarz
1998), which neither item-based selection, nor FVF’s can
explain. We agree that target selection can rely on discriminability
between items processed in parallel within FVFs, but the best
approach to explaining how we attend in the visual scene will
probably be multifaceted, involving covert and overt attentional
shifts.
Despite these criticisms H&O’s proposal is refreshing. We

suggest several predictions that can be made from it. We consider
priming of visual search (Maljkovic & Nakayama 1994; see Krist-
jánsson & Campana [2010] for review). Such priming occurs for
searches of varying difficulty (Ásgeirsson & Kristjánsson 2011)
and according to H&O, search difficulty determines FVF size.
If stimuli are predominantly processed within FVFs, then for
priming to manifest its effects, a primed target must fall within
the FVF. Increased search difficulty contracts the FVF, lowering
the probability that a target will fall within it. For difficult search
tasks, priming effects should therefore decrease when set-size
increases, while for easy tasks they should be constant (or decrease
more slowly), as the FVF is larger and therefore likely to include
the target. Here the proposal generates testable hypotheses,
where the literature does not have clear answers (but see
Becker & Ansorge 2013). Analogously, priming effects for
targets should also last longer for easy search than for difficult
search. With smaller FVFs more fixations are required to find
the target. Hence, there will be more intervening fixations
between the ones that include the target, most likely leading to
faster decay. Temporal profiles of priming have been investigated
(Kruijne et al. 2015; Martini 2010; Brascamp et al. 2011), but
these studies do not provide a clear test of this prediction.
Notably, it runs counter to a recent proposal that priming of con-
junction search is longer lasting than feature priming (Kruijne &
Meeter 2015).
Finally, we ask whether FVF size primes from previous trials,

though as we discuss above, the measurement of the FVF size
is problematic. While it is debatable that this is a prediction
unique to FVFs, the approach clearly predicts priming for fixa-
tions rather than individual items. Fuggetta et al. (2009) found
that search was faster when the physical size (and set-size) of a
search array was constant than when it changed, but priming of
items versus fixations has not directly been contrasted. We hope
that these and other new predictions will help with assessing the
usefulness of H&O’s new approach.
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Gaze-contingent manipulation of the FVF
demonstrates the importance of fixation
duration for explaining search behavior

doi:10.1017/S0140525X16000145, e144

Jochen Laubrock, Ralf Engbert, and Anke Cajar
Department of Psychology, University of Potsdam, 14476 Potsdam, Germany
jochen.laubrock@uni-potsdam.de ralf.engbert@uni-potsdam.de
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http://mbd.uni-potsdam.de/EngbertLab/Welcome.html

Abstract:Hulleman & Olivers’ (H&O’s) model introduces variation of the
functional visual field (FVF) for explaining visual search behavior. Our
research shows how the FVF can be studied using gaze-contingent
displays and how FVF variation can be implemented in models of gaze
control. Contrary to H&O, we believe that fixation duration is an
important factor when modeling visual search behavior.

Hulleman & Olivers (H&O) criticize the visual search literature
for having focused largely on the individual item as the primary
unit of selection. As an alternative to this view, the authors
propose that (1) visual sampling during fixations is a critical
process in visual search, and that (2) factors in addition to items
determine the selection of upcoming fixation locations. H&O
developed a very parsimonious simulation model, in which the
size of the functional visual field (FVF) adapts to search difficulty.
Items within the FVF are processed in parallel. Consequently,
when search difficulty is very high, the FVF shrinks to a size of
one item, effectively producing serial search. When search diffi-
culty is lower, more items are processed in parallel within the
FVF. These modeling assumptions were sufficient to qualitatively
reproduce much of the canonical data pattern obtained in visual
search tasks.

We applaud H&O for acknowledging the important and long-
neglected contribution of eye movement control in guiding the
search process, because we believe that many attentional phe-
nomena can be explained by considering oculomotor activity (e.
g., Laubrock et al. 2005; 2008). Although not all attention shifts
are overt, the neural underpinnings of covert attention shifts are
largely identical to those of eye movement control (Corbetta
et al. 1998). Attention research should therefore be able to
profit from the advanced models of the spatiotemporal evolution
of activations in visual and oculomotor maps as well as from the
methods for directly manipulating the FVF.

Gaze-contingent displays are a method to directly manipulate
the FVF. For example, in the moving-window technique
(McConkie & Rayner 1975) information is only visible within a
window of variable size that moves in real-time with the
viewer’s gaze. Visual information outside of the window is either
completely masked or attenuated. A very robust result from
studies using this technique is that FVF size is globally adjusted
to processing difficulty. In reading research, the size of the FVF
is often called the perceptual span, which has been shown to
increase with reading development (Rayner 1986; Sperlich et al.
2015) and to be dynamically adjusted, for example, when
viewing difficult words (Henderson & Ferreira 1990; Schad &
Engbert 2012). In scene perception parametrically increasing
peripheral processing difficulty, by, for example, selectively
removing parts of the spatial frequency spectrum from the periph-
eral visual field (Fig. 1, top), leads to corresponding reductions in
saccade amplitudes (Cajar et al. 2016a; Loschky & McConkie
2002), suggesting a smaller FVF. These modulations are stronger
when broad features are removed than when fine details are
removed (Cajar et al. 2016a), reflecting the low spatial resolution
of peripheral vision. Conversely, when the filter is applied to the
central visual field (Fig. 1, bottom) saccade amplitudes
increase–particularly if fine detail is removed, corresponding to
the high spatial resolution of foveal vision. Cajar et al. (2016b)
show that these very robust modulations of mean saccade

amplitude are directly correlated with the distribution of attention
(i.e., the perceptual span).

Are existing models of saccadic selection compatible with a var-
iable FVF? In biologically plausible models, a critical feature is a
spatial map with a limited spotlight of attention (i.e., an FVF-like
representation). Additionally, a simple memory mechanism
(called inhibitory tagging) prevents the model from getting
stuck by continually selecting the point of highest saliency.
Engbert and colleagues implemented such a dynamic model of
eye guidance in scene viewing (Engbert et al. 2015), based on
an earlier model of fixational eye movements (Engbert et al.
2011). The combination of two interacting attentional and inhibi-
tory maps could reproduce a broad range of spatial statistics in
scene viewing. Whereas these models do explain the selection
of fixation locations fairly well, an additional mechanism that
adjusts the zoom lens of attention with respect to foveal process-
ing difficulty (Schad & Engbert 2012) is necessary to capture
modulations of fixation duration.

In comparison to the complexity of these detailed dynamic
models, the H&O model has the advantage of simplicity.
However, this comes at a cost of somewhat unrealistic assump-
tions. For example, H&O assume that fixations have a constant

Figure 1 (Laubrock et al.). Illustration of gaze-contingent spatial
frequency filtering in real-world scenes. The white cross indicates
the current gaze position of the viewer. Top: Peripheral low-pass
filtering attenuates high spatial frequencies (i.e., fine-grained
information) in the peripheral visual field. Bottom: Central high-
pass filtering attenuates low spatial frequencies (i.e., coarse-
grained information) in the central visual field.
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duration of 250 ms and that only the number and distribution of
fixations adapt to search difficulty. The authors justify this decision
with previous research that barely found effects of target discrim-
inability on fixation durations in typical search displays. However,
at least for visual search in complex real-world scenes, research
shows that fixation durations are indeed affected by search diffi-
culty (e.g., Malcolm & Henderson 2009; 2010).

Thus, not only selection of fixation locations, but also control of
fixation duration is influenced by the FVF. In particular, mean fix-
ation duration increases when visual information accumulation in
regions of the visual field is artificially impaired by means of gaze-
contingent spatial filtering (Laubrock et al. 2013; Loschky et al.
2005; Nuthmann 2014; Shioiri & Ikeda 1989). However, this
effect is observed only when filtering does not completely
remove useful information – otherwise, default timing takes
over, meaning that fixation durations fall back to the level
observed during unfiltered viewing (e.g., Laubrock et al. 2013).
This might explain why effects of visual search difficulty are
more often reported for number of fixations rather than fixation
duration. A critical aspect of a model of fixation duration in
visual scenes is parallel and partially independent processing of
foveal and peripheral information (Laubrock et al. 2013). Given
that both FVF size and fixation duration adapt to task difficulty,
an important research goal of the future is to integrate models
of fixation location and fixation duration.

Set size slope still does not distinguish parallel
from serial search

doi:10.1017/S0140525X16000157, e145

Daniel R. Little,a Ami Eidels,b Joseph W. Houpt,c and
Cheng-Ta Yangd
aMelbourne School of Psychological Sciences, The University of Melbourne,
Parkville VIC 3010 Australia; bSchool of Psychology, The University of
Newcastle, Callaghan NSW 2308; cDepartment of Psychology, Wright State
University, Dayton, OH 45435-0001; dDepartment of Psychology, National
Cheng Kung University, Tainan City 701, Taiwan (R.O.C.).
daniel.little@unimelb.edu.au
http://www.psych.unimelb.edu.au/people/daniel-little
ami.eidels@newcastle.edu.au
http://www.newcl.org/eidels
joseph.houpt@wright.edu
http://www.wright.edu/∼joseph.houpt/
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Abstract: Much of the evidence for theories in visual search (including
Hulleman & Olivers’ [H&O’s]) comes from inferences made using
changes in mean RT as a function of the number of items in a display.
We have known for more than 40 years that these inferences are based
on flawed reasoning and obscured by model mimicry. Here we describe
a method that avoids these problems.

In their recent review, Algom and colleagues note that “Genera-
tions of cognitive psychologists appear to have been rendered
oblivious to the developments in mathematical psychology on
the importance and (im)possibility of distinguishing between par-
allel and serial processing based on straight line mean RT func-
tions” (Algom et al. 2015, p. 88). Although H&O make a
number of cogent points regarding the importance of eye move-
ments, the nature of eccentricity and target salience, and the
role of functional viewing field (FVF), when it comes to their dis-
cussion of serial and parallel search, the authors unfortunately
repeat the error of overinterpreting mean RT set-size functions.

As far back as Townsend (1971), researchers have demon-
strated that a parallel search process can lead to increases in
RT as a function of set size, whereas serial search can lead to
flat RT slopes as a function of set size. Consequently, the

authors’ attack on item-based search, which in the visual search lit-
erature is synonymous with serial search, uses the set size-RT slope
to make erroneous inferences about processing. This is an ongoing
issue with visual-search data, the ambiguity of which was so great
that Wolfe (1998b) declared the serial/parallel distinction to be a
dead end and initiated a switch in terminology calling zero-slope
functions “efficient” and positive-slope functions “inefficient”
search, effectively masking but not resolving the problem.
Townsend (1972; see also Townsend & Ashby 1983) pointed

out that a parallel model can mimic a serial model by setting
the intercompletion times of items in a parallel race (i.e., the
unobservable time that a parallel racing item completes its
race) equal to finishing times of items in a serial process. The
necessary implication is that relying on mean RTs as a function
of set size (in any search task, visual or memory) does not have
the inferential or discriminatory ability to differentiate serial
from parallel processing. As noted by Townsend (1990) and
acknowledged by Wolfe et al. (2010b), by utilizing factorial
designs and estimating RT distributions, serial and parallel
models (and several other important classes of processing
models) can be distinguished.
This theory and method, collectively known as Systems Fac-

torial Technology (SFT), was fully developed and introduced
20 years ago by Townsend and Nozawa (1995), and it continues
to be applied, developed, refined, and extended (Eidels et al.
2011; Houpt & Townsend 2012; Little et al. 2015; Townsend
& Wenger 2004). SFT can differentiate serial and parallel pro-
cessing by analyzing RT distributions from conditions that vary
the strength or quality of the stimulus to slow down or speed
up processing along each of the two dimensions (e.g., signal-
modality – audition and vision, or signal location – top and
bottom). Crossing two factors with two levels of strength, we
obtain four conditions: LL (low salience on both dimensions),
LH and HL (low salience on one dimension and high salience
on the other), and HH (high salience on both dimensions).
Diagnostic contrasts are computed by combining the RT distri-
butions (i.e., survivor functions) from the four factorial conditions.
Each architecture (e.g., serial or parallel) makes different predic-
tions for the diagnostic contrasts. Serial models predict additivity;
that is, the change from LL to HH should equal the sum of the
changes on each dimension separately; hence, (LL−LH)−(HL
−HH) = 0. By contrast, parallel models predict overadditivity (i.
e., positive, for self-terminating processing) or underadditivity
(for exhaustive processing). Inhibitory and facilitatory models
also predict under- and overadditivity, respectively (Eidels et al.
2011). These nonparametric tests allow for entire classes of
models to be tested and falsified. For instance, a completely nega-
tive contrast rules out all serial models.
SFT also provides the ability to differentiate many other impor-

tant facets of information processing in addition to architecture,
including workload capacity (how processing efficiency changes
in response to changes in the number of targets to process), (in)
dependence (whether processing channels are mutually facilita-
tory or inhibitory), and stopping rule (whether processing is self-
terminating or exhaustive). The last property is of particular
importance to the authors’ simulation because many of their
results depend on the stopping rule.
These methods are particularly useful in verifying aspects of

computational theories such as the one proposed by the
authors. The authors assume that items within the FVF are pro-
cessed in parallel and that the size of the FVF can be inferred
by examining the slope of RT set-size functions. Like the theories
the authors are attempting to displace, this procedure again
requires too much of the set-size function. The focus on RT var-
iability is more promising, and we applaud the general approach of
breaking down the search tasks by difficulty and examining target-
present and target-absent variability. However, the assumption of
deterministic fixation duration influences the conclusions that the
authors draw from variability. Even assuming a variance in fixation
duration that is independent of task difficulty and FVF size, the
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model will predict higher variance with more fixations. That could
mitigate, if not wash out, the decrease in variability with the
highest difficulty. Ideally one would attempt to directly manipu-
late target-present and target-absent RT variability, which applica-
tions of SFT to visual search have done (see e.g., Fific et al. 2008;
Sung 2008).

Could SFT be used to examine the properties of the FVF? Yes,
and easily. One would only need to manipulate the detection dif-
ficulty of two targets in an array that either did or did not require
eye movements. Related work by one of the authors (C-TY) using
SFT in redundant target detection has shown that processing is
parallel self-terminating, and of limited capacity when there are
few eye movements. By contrast, when eye-movements to a
target are forced, processing instead conforms to serial processing
(at least for some observers; see also Fific et al. 2010). We believe
that these results lend preliminary support to the authors’ infer-
ences but rely on the more rigorous methods of SFT rather
than the perilous mean RT set-size function slopes.

Oh, the number of things you will process
(in parallel)!

doi:10.1017/S0140525X16000169, e146
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alejandrolleras@gmail.com cronin2@illinois.edu
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Abstract: We highlight the importance of considering the variance
produced during the parallel processing stage in vision and present a
case for why it is useful to consider the “item” as a meaningful unit of
study when investigating early visual processing in visual search tasks.

There is much to like about Hulleman & Olivers’ (H&O’s) pro-
posal. However, the article falls short on at least two fronts.
Mostly, it suffers from over-generalizations in its core assumptions
that limit the potential of the article.

First, it assumes that early visual computations are identical,
irrespective of the type of visual search an observer is asked to
perform. However, there is strong evidence that the type of
early computations performed by the visual system are fundamen-
tally different when searching for a known target (e.g., look for a
“T”) than when looking for an unknown target (as in oddball
search), even when that unknown target “pops-out” from the dis-
tractors by virtue of its features (e.g., Bravo & Nakayama 1992;
Buetti et al. 2016; Lamy & Kristjánsson 2013; also see Li et al.
2004; 2006, for neural evidence that top-down goal changes
early visual processing).

Second, ample evidence exists that much can be performed in
searches that do not require eye movements. The authors
acknowledge, then quickly dismiss, this observation by assuming
all “easy” search (i.e., parallel search) can be accounted for by
simply assuming a very large FVF. On this front, H&O’s proposal
is no better than previous proposals that assume all parallel
searches are created equal (e.g., Wolfe 1994). They are not.
What is remarkable is that at that scale – that is, in visual searches
that are performed in parallel and without the need for eye
movements – the “single item” is a meaningful unit of measure-
ment: For a fixed-target search, RTs increase logarithmically as
a function of the number of items and the steepness of that log-
arithmic curve is determined by the similarity between the target
and the individual items (Buetti et al. 2016). The result of gloss-
ing over the subtleties of parallel search is that H&O’s remains
very much a univariate approach to visual search: determining

the FVF (or the size of the pooling region, as in Rosenholtz’
work) should be all that is needed to understand search perfor-
mance in any situation. Dismissing very efficient searches as
not interesting seems to us to miss an important point. In the
real world, peripheral vision can and probably does make very
fast and accurate decisions about many regions/pooling regions/
textures/items/objects because it has sufficient information to
determine which ones are unlikely to contain the target of the
search (Balas et al. 2009; Rosenholtz et al. 2012b, though see
other work challenging the notion of peripheral “pooling” or
averaging regions, Ester et al. 2013; 2015). Our work shows
that these peripheral decisions come at an detectable perfor-
mance cost. That is, in addition to the serial processing mecha-
nism imposed by successive moves of the FVF proposed by
the authors, an additional source of variance in performance
determines the time it takes to reach decisions about individual
peripheral items within the parallel processing stage. Visual
search is (at the very least) a bi-variate problem: one source of
variance determines the number of serial steps in processing
(the authors propose the size of the FVF), and another source
determines the efficiency with which individual items are
judged in the parallel process. This was highlighted in four exper-
iments in Buetti et al. (2016): When search displays contain both
easy-to-reject items (lures) and need-to-scrutinize items (candi-
dates), one can isolate the logarithmic contribution to RTs that
arise from parallel processing (i.e., the rejection of lures) from
the linear contribution to RTs induced by serial processing (i.
e., the scrutiny of candidates, or as the authors propose, the
number of moves of FVF). Figure 1 illustrates how both
sources of variances can be disentangled and visualized by plot-
ting separate RT functions for conditions containing an identical
number of candidates.

Finally, it is quite unlikely that fixations are random, as pro-
posed by the authors. They are likely determined by the output
of the computations in areas outside of the FVF, as proposed by
models such as Zelinsky’s TAM (2008), for example, and per-
formed mostly by parallel processing as well.

In sum, though we agree with the sentiment that overly-focus-
ing on the “single-item” has perhaps lead astray researchers inter-
ested in inefficient search, we anticipate a revival of interest on the
single item as meaningful for understanding search behavior. This
revival will come not where most would have expected (or where
most have looked) – in serial/slow searches – but rather precisely
where most (including H&O) have ignored: in parallel search.
This follows because in the context of parallel visual search,
manipulating the number of (high signal-to-noise ratio) items in
the periphery allows for a precise quantification of the efficiency
of parallel processing and of the similarity between the peripheral
items and the search template. Of course, one might wonder
whether this is at all relevant to our understanding of real-world
visual search. Given the visual heterogeneity of a real world
scene, the number of items that ought to be closely inspected
by focused attention is likely to be only a fraction of the total
(Neider & Zelinsky 2008; Wolfe et al. 2011a). Take the simple
example of looking for lawn furniture in your garden: in spite of
there being an very large number of items in the scene (flowers,
trees, grass, animals, etc.), most of them are vastly different
from lawn furniture and one would never spend time closely
attending to them when looking for a place to sit. Yet, as our
research has shown, the presence and visual attributes of these
not-to-be-inspected items do affect the time it will take observers
to find a place to sit.

Nonetheless, these shortcomings are clearly fixable and a better
account of the contribution of parallel vision to behavioral perfor-
mance can be easily integrated into the H&O proposal. Future
empirical work should be aimed at estimating the contribution
of peripheral processing both outside of FVF and within FVF to
(a) planning future eye movements and (b) predicting fixation
processing times.
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The FVF framework and target prevalence
effects

doi:10.1017/S0140525X16000170, e147
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Abstract: The Functional Visual Field (FVF) offers explanatory power. To
us, it relates to existing literature on the flexibility of attentional focus in
visual search and reading (Eriksen & St. James 1986; McConkie &
Rayner 1975). The target article promotes reflection on existing findings.
Here we consider the FVF as a mechanism in the Prevalence Effect
(PE) in visual search.

Figure 1 (Lleras et al.). Results from Experiments 3A–D in Buetti et al. (2016) showing time (in ms) to find a target (an oriented red T)
as a function of the number of elements in the display, shown separately for displays containing 4 and 8 candidates (oriented red Ls),
amongst a varying number of lures. The full lines show the best fitting logarithmic trend for each series, and the corresponding
measure of fit (R2). A. Data from Experiment 3A: The dotted lines visualize the scrutiny functions for each level number of lures.
The slopes for the scrutiny function when no lures were presented (0 lures) was 67 ms/item and was no different than when 4, 8, 16,
or 28 lures were present. Error bars indicate the between-subject standard error of the means. B–C. Combined data from
Experiments 3A–D showing logarithmic screening functions when 4 (B) or 8 (C) candidates are present in the display, showing
orderly logarithmic sensitivity to target–lure dissimilarity.
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Hulleman & Olivers’ (H&O’s) focus on simulating how
slope gradients are influenced by the difficulty of search provokes
a thoughtful discussion. However, limiting simulations to these
data alone can mistakenly suggest that the FVT framework’s use-
fulness is itself limited. To help address this perceived limitation,
we have reanalysed data from a study of the Prevalence Effect
(PE; Godwin et al. 2015a; Wolfe et al. 2005).

The PE refers to the influence that target probability has on
both target selection and verification (e.g., Godwin et al. 2015b;
Hout et al. 2015). Frequently occurring targets tend to be
found and verified quickly. In contrast, their absence is reported
slowly. The presence of infrequent targets is reported slowly
and their absence reported quickly.

The target article accounts for the modulating effect of target
discriminability on search reaction times solely by changes in
the size of the FVF. Might changes in the size of the FVF also
contribute to the PE? Specifically, high target prevalence might
lead participants to initially adopt a broader FVF than when
target prevalence is low. A relatively broad FVF would allow the
presence of targets to be detected quickly whereas a relatively
narrow FVF would lead to slowed target detection. In deriving
these hypotheses, we have made two assumptions. First, and to
account for slow target-absent responses when target prevalence
is high, we assume that failure to find evidence of target presence
when the FVF is broad leads to a dynamic resizing of the FVF to
allow, at the limit, item-by-item analysis (note that a global-to-
local fixation pattern is consistent with recent consideration of
search, Godwin et al. 2014; Over et al. 2007). Second, we
assume that the fixation point of a broadened FVF is more
likely to be centrally than peripherally positioned. For a broad
FVF, a central fixation will encompass more items than a non-
central fixation will. These reduce to a hypothesis that, early in
search, fixations are more centrally biased in high-prevalence
than low-prevalence search.

To test this hypothesis, we reanalysed data on target-present trials
fromGodwin et al. (2015a). Space restrictions prohibit a full account
of these data and analyses. Briefly, to assess the patterns quantita-
tively, the distribution of fixation locations across displays were nor-
malised within high- and low-prevalence conditions and split into
fixations made early and late in search (as defined by median
split). Z-scores for the differences between high- and low-preva-
lence conditions were calculated for these normalised data. We
found that increasing prevalence is associated with more fixations
to the centre of search displays early in search. A centre bias
(Tseng et al. 2009) is present early in low-prevalence search, but
the bias is significantly stronger under high prevalence.

These data, then, are consistent with the FVF framework.
However, we do not claim that our reanalysis provides unequivo-
cal support. Rather, the framework prompts us to reconsider data
in a way that provide an additional account of how search patterns
might change with target prevalence.

The current utility of the FVF is tempered, in our view, by two
limitations. First, the current focus on numbers of fixations
ignores the influence of fixation duration. Increasing cognitive
demands affects both the number and duration of fixations (Liver-
sedge & Findlay 2000). Consequently, any comprehensive frame-
work of search behaviour must explain both fixation number and
duration. Recent evidence suggests that fixation durations during
visual search are controlled on the basis of a trade-off between
making rapid fixations and allowing time to examine objects in
the display (Godwin et al. in press). As a consequence, there
have been calls for a greater understanding of fixation duration
variability during visual search tasks (Reingold & Glaholt 2014).

Second, the authors rightly wish to extend consideration to
searching in scenes. As the search environment becomes richer
in contextual information, equation of selection time, processing
time, and dwell time to fixation time (sect. 6.3) becomes more
challenging. In reading, spillover effects are frequently observed
(whereby a linguistic influence of one word is seen to affect fixa-
tions on it and later words in the sentence; Rayner & Duffy

1986). By extension, visual search in scenes may also be subject
to partial dissociation between fixation location and the set of loca-
tions from which information is currently being processed. To this
extent, evaluation of effects across temporally contiguous fixations
as well as spatially contiguous fixations is a critical issue for theo-
retical development.

In sum, we consider the FVF framework as a useful prompt to
rethink visual search. Here we have provided some provisional data
that might further support this framework. In addition, two areas of
concern to be addressed in future developments have been noted.

An appeal against the item’s death sentence:
Accounting for diagnostic data patterns with
an item-based model of visual search
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Abstract: We show that our item-based model, competitive guided
search, accounts for the empirical patterns that Hulleman & Olivers
(H&O) invoke against item-based models, and we highlight recently
reported diagnostic data that challenge their approach. We advise
against “forsaking the item” unless and until a full fixation-based model
is shown to be superior to extant item-based models.

Hulleman & Olivers (H&O) propose that fixations, rather than
items, should serve as the central unit of analysis in theories of
visual search. We agree that the fixation-based approach high-
lights important issues, especially the potential to integrate theo-
ries of manual responses and eye fixations. However, we disagree
with H&O that their simulation “provides a compelling argument
for abandoning” (sect. 6, para. 2) the item-based stance.

First, H&O emphasize the “difficulties or even the failure of
these models to capture the distributional aspects of RTs” (sect.
6.1, para. 2). Recently we developed an (item-based) serial
search model, dubbed competitive guided search (CGS; Moran
et al. 2013), which successfully accounts for benchmark RT
distributions (Wolfe et al. 2010b) and error rates across three clas-
sical search tasks (feature, conjunction, and spatial configuration
[“2 vs. 5”] searches) and which is superior to a more flexible par-
allel model (Moran et al. 2016). Comparing our Figure 1 with
H&O’s Figures 3 and 4, we see that CGS can account remarkably
well for all of the empirical patterns (see our Table 1 for simula-
tion parameters). In fact, whereas H&O’s simulation grossly mis-
estimates some aspects of the data (it underestimates RTs in the
easy and medium tasks and overestimates the target absent [TA]
slope in the hard task and the rate of increase in SD in all
tasks), CGS provides accurate predictions.

H&O especially highlight “variance inversion” (RT is more var-
iable in TA for easy and medium-difficulty tasks but more variable
in target-present [TP] displays for hard tasks) as evidence against
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item-based models. However, CGS can explain this pattern in that
multiple sources contribute to RT variability: (a) variance in how
many items are identified before a response is issued (as deter-
mined by the tendency to quit the search [for TA] and by the
amount of guidance towards the target [for TP]), and (b) variance
in item identification time. Because (b) builds up as more items
are identified and because, in all three simulations, more items
are identified in TA than in TP, (b) contributes to a higher TA var-
iability. However, in the “hard” task, (a) is so much larger for TP
that it overrules the influence of (b) and, hence, inverses the var-
iance. Finally, H&O’s claim that item-based models encounter the
problem that slopes are much lower than expected based on esti-
mates of attentional dwell time from other paradigms (∼200–300
ms). A fourth simulation (Table 1, bottom row) with an attentional
dwell time of 200 ms (simulated by identification time per item;
Table 1, rightmost column) yielded slopes in the range claimed
to be problematic for item-based models (25 and 73 ms/item for
TP and TA, respectively). These moderate slopes are obtained
because adding 1 item to displays increases the mean number
of identified items by only ∼0.13 (TA) and ∼0.36 (TP).

Second, manipulating target discriminability parametrically (via
orientation contrast), we recently found several diagnostic data
patterns, which we believe successful search theories should
explain (Liesefeld et al. 2016): (a) an intermediate difficulty
range (between medium and easy search), where search is effi-
cient (e.g., 1 ms/item) for TP but inefficient (e.g., 15 ms/item)
for TA, yielding TA/TP slope ratios much larger than 2; and (b)
strong effects of discriminability on search intercepts (decreases
>100 ms) in the efficient range. CGS accounts for (a) by large
guidance (so the target is always selected first) and a low quit
parameters (so the number of inspected items in TA displays
increases with set size); and CGS accounts for (b) by a speed-up
of item identification. However, these patterns raise challenges
to H&O’s approach. Indeed, repeating their simulation over a
wide range of the maximal Functional Viewing Field (FVF)
where search is efficient for TP (<5 ms/item), we found (Fig. 2)
that the simulated TA/TP slope ratio is always smaller than 2
(left panel). Furthermore, when search is efficient for both TA
and TP displays, the simulated intercepts hardly change (only
about 5 ms; right panel).

Figure 1 (Moran et al.). Correct RTs from three simulations of the CGS model (Table 1), reflecting hard, medium, and easy search
tasks. Left and right panels depict means and SDs, respectively, as functions of set size. In the left panels, error proportions (next to
the symbols) and search slopes (on the right) are indicated.

Table 1 (Moran et al.). CGS parameters used in the simulations (see Moran et al. 2013).

Task wtarget d u Dwquit Tyes
min Tno

min g m u/d

Easy 400 50 3 6 0.35 0.43 12 0.015 0.06
Medium 2.9 0.317 0.022 0.003 0.5 0.5 30 0.014 0.07
Hard 1.06 0.714 0.246 0.02 0.3 0.3 5 0.024 0.344
200-ms Dwell Time 5.5 1.222 0.244 0.25 0.2 0.2 30 0.014 0.2
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Finally, H&O concede that their high-level conceptual simula-
tion provides merely a proof of principle for the viability of the fix-
ation approach, but that there are still details that need to be
explicated in a full model. It is tempting to think that the
success of a model depends solely on its core functional assump-
tions and that, therefore, a fully explicated model would account
for data better than the current preliminary framework. Alas, a
model’s success also hinges largely on peripheral assumptions
and on their interaction with the central assumptions (e.g.,
Jones & Dzhafarov 2014). For example, H&O acknowledge a
problem with their stopping rule. This rule is indeed peripheral
to the focal items versus fixations debate; however, a stopping
rule affects search-RT distributions and error rates substantially
and it is therefore unclear how well H&O’s framework will
perform with a more plausible stopping rule.

In conclusion, we believe that the proposed framework would
greatly benefit from developing the details of a full fixation-based
model, followed by tests of how well it captures diagnostic empirical
data patterns as compared to item-based models (using formal
model comparisons). Unless and until this is done, however, we find
reports of an “impending demiseof the item” somewhat exaggerated.

Parallel attentive processing and pre-attentive
guidance
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Abstract: This commentary focuses on two related, open questions in
Hulleman & Olivers’ (H&O’s) proposal: (1) the nature of the parallel
attentive process that determines target presence within, and thus
presumably the size of, the functional visual field, and (2) how the pre-
attentive guidance mechanism must be conceived to also account for
search performance in tasks that afford no reliable target-based guidance.

Hulleman & Olivers (H&O) make an interesting case for an
approach that takes eye fixations, rather than individual items,
as its central unit. Within the fixational “functional field of view”
(FFV), items are processed in parallel. The size of the FFV is
adjusted according to search (target discrimination) difficulty,
determining the number of fixations and thus RTs. While
H&O’s, and previous (e.g., Zelinsky 2008), arguments that eye
movements and the FFV play a role in realistic visual search are
persuasive, their model leaves (1) the attentional process that
detects targets and (2) the pre-attentive process that guides fixa-
tions underspecified. Here, we discuss point (1) in relation to
Humphreys and Müller’s (1993) “Search via Recursive Rejection”
(SERR) model (discussed by H&O in sect. 3.2), which, arguably,
anticipated some of the ideas advocated by H&O, and (2) the
need for a pre-attentive search-guidance mechanism in both
SERR and H&O’s model.

1. Like H&O’s model, SERR deploys a sequence of parallel
search steps to decide whether a target is present in the display.
Although H&O are silent about the process that determines
whether the target is present in each FFV region (a process
their model considers as error-free), SERR – a connectionist
implementation of Duncan and Humphreys’ (1989) “Similarity
Theory” – posits an error-prone mechanism. In SERR, items,
the target and the distractors, within some FFV of spatially paral-
lel processing compete for activating their (higher-level) template
representations. When there are multiple distractors of the same
complex feature description in the FFV, they are likely to win the
competition over the single target, whereupon they are top-down
suppressed “as a group.” This process operates recursively until
either (1) the target activates its template, triggering a target-
present (TP) decision; or (2) all items are “removed” from the
FFV, leading to a target-absent (TA) decision. These dynamics
are influenced by target–distractor similarity: The more similar
the target is to (some of) the distractors, the more likely it is to
be rejected along with a distractor group, yielding increasing
miss rates. To bring the rate of target misses down to acceptable
levels (matching those exhibited by humans), SERR must make
several rechecking “runs” at the items in the FFV, until the
target is either detected or consistently not found. Importantly,
SERR produces miss rates that accelerate positively with the
number of items in the FFV (especially with multiple distractor
groups), in which case the rechecking strategy can become pro-
hibitively expensive. As discussed by Humphreys & Müller
(1993, p. 105), “A solution is to limit SERR’s functional field so
that there is a balance between the first-pass miss rate and the
time cost incurred by rechecking” – providing an explicit, error-
based “rule” for the FFV size adjustment. The adjusted FFV
would then have to be deployed serially across the display
(whether this involves covert or overt attention shifts). This resem-
bles some of H&O’s central ideas concerning discriminability-
dependent FFV adjustments, which would be reflected in the
number of attention shifts necessary to perform the task. As an
aside, H&O are not quite right in stating that “the…empirical

Figure 2 (Moran et al.). Simulated search slopes and intercepts as a function of the maximal Functional Viewing Field (FVF max)
plotted in the range where TP (left) or both TA and TP (right) searches are efficient.
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work [associated with SERR] focused on relatively shallow search
slopes” (sect. 3.2, para. 3): Müller et al. (1994) present simulations
of human slopes (with slope estimates derived from simulated
mean RTs and RT distributions) ranging, for example, in their
Experiment 1, from about 30 to well over 200 ms/item.

2. Given a need for overt or covert attention shifts, efficient
search would require an element of pre-attentive “guidance” for
the FFV to be directed to (only) the most “promising” regions of
the display. In principle, guidance can be provided by a combination
of bottom-up and top-down mechanisms, for example, through the
computation of local feature-contrast signals and their summation,
acrossdimensions, on somesearch-guiding “overall-saliency”or “pri-
ority”map of the field. Note that thismap is generally conceived as a
pre-attentive representation, even though it is subject to top-down
(feature- and dimension- as well as memory-based) biasing.
Notions of guidance are at the heart of models from the Guided-
Search (GS) family, includingour “CompetitiveGS”model (e.g.,Lie-
sefeld et al. 2016; Moran et al. 2013; 2016), and well supported
empirically. Although feature contrast computations themselves
are not necessarily “item-based” (see, e.g., Itti & Koch 2001),
much of what is known about their workings stems from item-
based search experiments! Arguably, then, as acknowledged by
H&O (in sect. 6.6), theirmodel (and SERR!) would need to incorpo-
ratesomenotionof “guidance” to fully account forhumansearchper-
formance –which would bring it closer into line with “traditional,”
two-stage models of visual search like GS.

Note thatH&O “buy in” guidance frommodels such as Zelinsky’s
(2008) “Target AcquisitionModel” or Pomplun et al.’s (2003) “Area
Activation Model.” In these types of model, guidance is exclusively
top-down: target- (template- or feature-) based. In fact, Zelinsky
(2008) finds it “arguable whether a model that combines both top-
down [target-template-based] and bottom-up [saliency] signals
would be more successful than TAM in describing human behavior,
at least in tasks in which the top-down target information [is] highly
reliable” (p. 825). Suchmodels, however, fail to address what deter-
mines target detection in search for (feature or feature conjunction)
singleton targets, where there is no (reliable) target template to top-
down guide the search (Müller et al. 1995;Weidner&Müller 2013);
for example, is target “pop-out” based on a parallel attentive process
operating over the whole display or a pre-attentive, salience-based
process? One interesting possibility is that, on TP trials, detection
decisions are triggered directly by the salience map – consistent
with studies showing pop-out detection with no or minimal target
identity processing (e.g., Müller et al. 2004; Töllner et al. 2012b)
and some process of parallel distractor rejection taking place on TA
trials (e.g., Müller et al. 2007). On more difficult search trials, the
pre-attentive guidance mechanism could direct the attentive
process to sample an area that surrounds the location of the
highest salience. Here, models such as H&O’s may indeed add to
the traditional item-based models.

Chances and challenges for an active visual
search perspective
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Abstract: Using fixations as the fundamental unit of visual search is an
appealing gear change in a paradigm that has long dominated attention
research. To truly inform theories of search, however, additional
challenges must be faced, including (1) an empirically motivated

definition of fixation in the presence of fixational saccades and (2) the
biases and limitations of transsaccadic perception and memory.

In their target article, Hulleman &Olivers (H&O) argue for a con-
ceptual change in characterizing visual search efficiency. The clas-
sical view explains visual search times as a function of the number
of stimuli in a display (i.e., set size). According to the critique by
H&O, this perspective constrains the study of visual search to a
scenario that requires clearly defined objects viewed during pro-
longed fixation. Moreover, they argue, the traditional approach
falls short of incorporating results from a larger range of search
conditions – including overt visual search and searches in natural
scenes in which items are not clearly defined. To overcome
these limitations the authors present a theoretical framework
that accounts for the number of fixations in a scene based on
the assumption of an adjustable functional visual field (FVF),
across which parallel processing takes place. In considering eye
movements as a fundamental part of search, however, a number
of challenges arise that, once faced, promise important theoretical
insights for studies interpreted in this new context and beyond.
We will focus on two challenges here.

1. What’s a fixation? The authors’ central aim is to understand
search times based on the number of fixations during the search
process. However, a fixation is not as clear-cut and discrete an
entity as it might seem. Large primary saccades are frequently fol-
lowed by smaller secondary saccades that often correct for errors
in saccade landing position, but can also be observed after precise
primary saccades (Ohl et al. 2011). Both primary and secondary
saccades meet the criteria for a saccadic eye movement, but it
remains unclear whether the interval between primary and sec-
ondary saccades should be considered an independent fixation.
Moreover, even during instructed fixation, small microsaccades
are observed at a rate of 1–2 per second (Rolfs 2009). Microsac-
cades have traditionally been considered fixational eye move-
ments, suggesting that the interval between two microsaccades
does not constitute an independent fixation. However, evidence
accumulates that they are controlled by the same machinery as
large saccades (Hafed et al. 2009; Rolfs et al. 2008) and fulfill the
same purpose (Hafed 2011; Ko et al. 2010), namely, bringing a
stimulus onto the part of the fovea that affords the highest resolu-
tion. Fixations separated by microsaccades, therefore, may need to
be included when computing visual search times. This acknowledg-
ment has two interesting consequences. First, the proposed frame-
work might help clarify whether the intervals bordering on a
microsaccade should be considered separate fixations. By compar-
ing empirically observed numbers of fixations contingent on their
definition (as either including microsaccades or not), future
research could evaluate what definition of a fixationmore accurately
predicts the observed search times. Second, the presence of micro-
saccades during fixations may help resolve the dilemma that H&O
face when explaining how search can be successful even in the
absence of (large) saccades. Observers are not aware of their own
microsaccades, and the generation of microsaccades has been
linked to shifts of covert attention (Engbert & Kliegl 2003; Hafed
& Clark 2002; Yuval-Greenberg et al. 2014). The perpetual execu-
tion of microsaccades results in more than one fixation even when
observers are explicitly instructed to fixate while performing the
visual search task. This variable number of fixations could be infor-
mative for characterizing covert visual searches and provide an
opportunity to conceptualize it in H&O’s framework.

2. Constraints of transsaccadic vision. Active vision is charac-
terized by severe processing limitations that present challenges
and constraints for theories of visual search. With each saccade,
the incoming light reflected by an object will fall onto a new
part of the retina and is thus processed by largely different
neural populations in every retinotopic area in the visual process-
ing stream. As a consequence, the visual system needs to keep
track of the locations of relevant items as well as of their identities
(see Cavanagh et al. 2010 for a review), including potential targets
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and clear non-targets. There is strong psychophysical evidence
that attended locations are updated across saccades (e.g., Jonikai-
tis et al. 2013; Rolfs et al. 2011), most likely relying on perisaccadic
updating of visual priorities in visual attention-related brain areas
(see Wurtz 2008 for a review). Indeed physiological results
suggest that this updating of visual priorities (and, hence, the dis-
tribution of attention) involves the entire visual field, including
distractor locations (Mirpour & Bisley 2012). Whereas this evi-
dence suggests that the system is keeping track of the locations
of potential targets and distractors, the accumulation of spatially
disperse stimulus feature information across fixations has severe
capacity limits. Indeed only three to four items are remembered
correctly across saccades (Irwin 1991), and visual memory is
heavily biased towards the saccade target (Bays & Husain 2008;
Rolfs 2015). Thus far, H&O’s framework considers a restriction
only in how many visited locations can be remembered but does
not take into account the visual system’s limited ability to keep
track of stimulus information across saccades. To the extent that
this stimulus information is relevant for the search task, the bottle-
necks that saccades impose on visual perception and memory fun-
damentally constrain the relationship between the number of
fixations and an observer’s search efficiency. Although item-
based models do not address saccade-related constraints at all,
the framework put forth by H&O provides a fertile ground to
incorporate these insights from the study of active vision into
the domain of visual search.

To conclude, research on human eye movement has revealed
innumerable determinants shaping the alternating sequence of
saccades and fixations – including their fundamental link to
visual perception and memory. The framework presented by
H&O provides a basis for the inclusion of these insights in the for-
mulation of fixation-based theories of visual search. We high-
lighted two aspects – the controversial definition of fixations and
the constraints imposed by transsaccadic vision – that provide
challenges and opportunities for theories of active visual search.

Scanning movements during haptic search:
similarity with fixations during visual search
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Abstract: Finding relevant objects through vision, or visual search, is a
crucial function that has received considerable attention in the literature.
After decades of research, data suggest that visual fixations are more
crucial to understanding how visual search works than are the attributes of
stimuli. This idea receives further support from the field of haptic search.

Finding objects in a complex environment is a crucial skill for the
survival of humans and animals. Finding the suitable fruit in a clut-
tered forest, detecting predators disguised in the savanna, or
simply finding a stapler on a cluttered office desk, all show the
importance of the ability to find objects in an environment con-
taining much irrelevant information (distractors). In most cases,
and for humans in particular, this function is carried out by the
visual modality, namely through visual search. Not surprisingly,
visual search has been broadly investigated in humans and
animals (Hickey et al. 2010; Proulx et al. 2014; Tomonaga 2007;
Young & Hulleman 2013). Over the past several decades, theories
of visual search have been constructed based on studies focusing
on the number and the type of items used as distractors in visual
search tasks (Duncan & Humphreys 1989; He & Nakayama 1992;
Treisman 1982). In other words, the characteristics of the items
were considered the central feature in visual search.

However, towards the end of the 90s, empirical data began to
suggest that, rather than the characteristics of the items, another
feature might better explain how visual search works. This
feature is the number of fixations produced by participants
during visual search tasks (Wolfe 1998b; Wolfe et al. 2010b; Zelin-
sky 1996). The more recent and mounting evidence in favour of the
theory based on visual fixations prompted Hulleman & Olivers
(H&O) to propose a novel theory to interpret past results and
design future experiments. The authors conducted a meta-analysis
to demonstrate how the number of fixations accurately predicts
search times, and argued that the theory based on eye-fixations
takes into account the physiology and the limits of the visual
system. This led the authors to suggest that number of fixations
would be better able to explain how visual search works than the
number and type of the items. In fact, fixations are a constant
factor (“fixations are fixations”), whereas items can be objects,
faces, letters, numbers, and so forth, making experimental results
highly task-dependent. This implies that studying fixation patterns
would facilitate the comparison of results across different studies,
and perhaps lead to a more comprehensive understanding of the
underlying mechanisms of visual search.

This innovative approach is, however, limited to visual search. In
real world, object finding could depend upon, and can be per-
formed through, other modalities such as the haptic modality; for
example, finding the keys in a pocket, finding a torch during a black-
out, and so forth. The haptic modality consists of touch as well as
proprioceptive and kinaesthetic cues (Gibson 1962; Heller 1984),
and is very well suited to conveying information regarding shapes
and positions (plus “extra” information such as temperature) of
external objects (Lacreuse & Fragaszy 1997; Lederman &
Klatzky 1987; Sann & Streri 2007). Interestingly, haptics and
vision are broadly interconnected at the behavioural level (Balles-
teros et al. 1998; Grabowecky et al. 2011; Newell et al. 2005; Pas-
qualotto et al. 2005; 2013a), and the two sensory modalities are
strongly interlinked in the brain (Lacey et al. 2009; Pasqualotto
et al. 2013b; Pietrini et al. 2004). Therefore, it seems reasonable
to assume that, if visual search is based on visual fixations, haptic
search might be based on hand/finger scanning movements.

Haptic search has been far less studied than visual search; nev-
ertheless, both early and recent evidence suggests that scanning
movements are as pivotal for haptics (Lederman & Klatzky
1987; Overvliet et al. 2007; Plaisier et al. 2008; 2009; Van
Polanen et al. 2011) as fixations are for vision, thus supporting
the assumption that the two modalities are strongly interlinked
(see the previous paragraph). For example, in a haptic search
task where participants had to find a target object among
several distractors through active touch, haptic scanning patterns
resembled patterns of eye-fixations observed in visual search
(Overvliet et al. 2007). A similar study reported that, rather than
the number and type of distractors, the strategy of haptic explora-
tion (i.e., using one finger, one hand, or two hands) was the crucial
factor that influenced haptic search performance (Overvliet et al.
2008). The same study also reported that systematic “zig-zag”
haptic scanning patterns were observed across different searching
conditions (e.g., different target objects), which suggests that
scanning movements reflect a fundamental feature of haptic
search. Furthermore, another study found that the “pop-out”
effect well documented in the literature of vision (e.g., detecting
a red object amongst blue objects) also occurs for haptics, and that
haptic scanning movements were the best predictor for haptic
search performance (Plaisier et al. 2008). The similarity
between visual and haptic search is consistent with theories
such as neural reuse (Anderson 2010) and metamodal brain
(Pascual-Leone & Hamilton 2001), both of which suggest a sub-
stantial overlap in the brain across the areas processing input
from different sensory modalities (Pasqualotto et al. 2016;
Uesaki & Ashida 2015).

Although the novel approach to understanding the underlying
mechanisms of visual search proposed in this article is supported
by evidence from haptic search, the number of studies on haptic
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search is still very limited compared to that on visual search, thus
more research is needed to confirm those initial findings. In par-
ticular, it is critical to compare the patterns of visual fixations and
haptic scanning movements arising within the same experimental
setup directly to achieve a more holistic understanding of visual
search as well as object search through other sensory modalities.

Mathematical fixation: Search viewed through
a cognitive lens

doi:10.1017/S0140525X16000224, e152

Steven Phillips and Yuji Takeda
National Institute of Advanced Industrial Science and Technology (AIST), AIST
Tsukuba Central 6-11, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
steve@ni.aist.go.jp yuji-takeda@aist.go.jp
https://staff.aist.go.jp/steven.phillips
https://staff.aist.go.jp/yuji-takeda

Abstract: We provide a mathematical category theory account of the size
and location of the authors’ Functional View Field (FVF). Category theory
explains systematic cognitive ability via universal construction, that is, a
necessary and sufficient condition for composition of cognitive
processes. Similarly, FVF size and location is derived from a (universal)
construction called a fibre (pullback) bundle.

Hulleman&Olivers (H&O) account for an impressively diverse array
of visual search data with a single free parameter: the “size” of
(number of items in) their putative Functional View Field (FVF).
Nonetheless, we see two critical shortcomings: (1) FVF is purely
descriptive and lacking independent motivation, which is indicative
of an ad hoc assumption (Aizawa 2003); and (2) FVF size is potentially
infinite in continuous domains, making it unclear how such cases are
supposed to be unified with search in finite settings. In support of the
target article, we provide a mathematical (categorical/topological)
basis for FVF (size and location), called a fibre (pullback) bundle
(Husemoller 1994), to help resolve these problems.

A category consists of a collection of objects, a collection of
morphisms between objects, and an operation for composing
morphisms (Mac Lane 1998). For example, every topological
space is a category whose objects are the subsets constituting
the topology, and morphisms are inclusions. Categories can
model cognition by interpreting objects as cognitive states or
spaces, morphisms as cognitive processes between states/spaces,
and the operation as composition of cognitive processes. A univer-
sal construction is an arrangement whereby every morphism is
composed of a common morphism and a unique morphism.
This arrangement generalizes and refines classical/symbolic
(Fodor & Pylyshyn 1988) and connectionist/functional (van
Gelder 1990) compositionality by providing a necessary and suffi-
cient condition for the indivisibility of certain clusters of cognitive
capacities (Phillips & Wilson 2010; 2011; 2012), without the ad
hoc assumptions that were problematic in other approaches
(Aizawa 2003). Moreover, every universal construction is
optimal in a certain category-theoretical sense. Thus, the prefer-
ence for aligning relations over features in analogy (Gentner
1983), affording optimal transfer of source knowledge to target
domain, derives from a universal construction (Phillips 2014).
Visual search also involves compositionality and systematicity,
hence our pullback approach to some differences between
feature versus conjunctive search (Phillips et al. 2012). Similar
considerations motivate our fibre bundle approach to FVFs.
We regard the FVF as a projection of visual information formal-

ized as a fibre bundle (E, B, π, F): a topological space E, called the
total space, that is locally a product of base B and fibre F, together
with a projection π : E→B that is a continuous surjective map. Pro-
jections can be filters, discussed in the target article, in the sense of
maps from unfiltered display (total) spaces to filtered view (base)
spaces. For example, the projection π1 : C×O→C filters out fea-
tures in orientation space O so that attention is focused on features
in colour space C – total space C ×O is the product of base C and
fibre O. Likewise, π2 : C ×O→O filters out colour features to focus
attention on orientation features, as the task demands.
Search involves changes in fixation that are bundle maps. In

particular, a pullback bundle is obtained by “pulling back” a

Figure 1 (Phillips & Takeda). Fibre bundle (a) commuting/pullback square, and corresponding examples for (b) a natural scene, (c)
feature search, and (d) conjunctive search.
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fibre bundle along a continuous map f : B′→B between base
spaces, obtaining total space f*B of pairs (b’, e), in a way that pre-
serves bundle structure. That is, Figure 1(a) is a commuting (pull-
back) square: π(g(b′, e))=f(π′(b′, e)). Commute means that fixation
change after filtered view is the same as filtered view after fixation
change, so search over view space is effectively search over display
space. This construction is likened to a database lens, developed
for a conceptually similar view update problem (Johnson et al.
2012), hence the expression “cognitive lens.”

FVF size and location are determined by the nature of the pro-
jection and an inverse. A fibre over a point b∈B, that is, the set
of points in E that project to b, denoted π-1[b], corresponds to
an FVF. Hence, the size of an FVF is the number of elements in
π-1[b]. A section of a fibre bundle is a continuous right inverse of
its projection, that is, a function σ : B→E such that π(σ(b)) = b.
The location of an FVF associated with point b in view space is
the point σ(b) in display space. The pullback condition (Mac
Lane 1998) restricts bundles to disjoint unions of fibres, an
optimal partitioning that prohibits gaps between fibres or overlaps.

Projections based on convex hulls of (topologically) neighbouring
elements are one way to realize FVF for search in both natural and
laboratory settings. For example, Figure 1(b) depicts a “natural”
scene (E). Each convex hull (smallest set) enclosing one of the
three scene components, that is, two people, a dog, and a tree,
has a centre of mass, hi. The projection (π) sends each point e∈E
to the closest centre. The fibre Fi is the region containing hi, with
boundaries indicated by dashed lines (cf. Voroni diagram). The
base (B) is the (discrete) topological space on the three-centre set
H, that is, the set of all subsets of H (cf. Delauney diagram). FVF
location is the corresponding centre. An “X” indicates fixation
before and after attentional shift, and dashed circles indicate corre-
sponding items in the base. Pullback squares compose (Mac Lane
1998). So response time corresponds to the number of composed
squares to termination. By commutativity, search need only
involve the three items in the base, rather than a very large (poten-
tially infinite) number of locations in the display; greater resolution
implies more locations (cf. texture-based search).

An analogous situation applies to feature versus conjunctive
search, shown in Figure 1(c, d). Lines connecting bars indicate
neighbours in topological space; connected graphs correspond
to fibres, which are larger in feature than conjunctive search,
hence feature search is generally more efficient. Off-item fixation
corresponds to a virtual bar at the “centre of mass” of a multinode
graph, so fixation need not coincide with a displayed bar. This sit-
uation is akin to perceptual grouping (Duncan & Humphreys
1989). Similar considerations apply to conjunctive search (Wolfe
et al. 1989): Nearby items are less likely to be of the same kind,
hence FVFs are smaller and the number of fibres greater, imply-
ing the observed steeper search slope. A base can contain non-
visual items, for example, categories affording category-guided
search (Zelinsky et al. 2013). The challenge is to develop an
FVF model incorporating the mathematical theory.

Task implementation and top-down control in
continuous search

doi:10.1017/S0140525X16000236, e153

Wolfgang Prinz
Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103,
Germany.
prinz@cbs.mpg.de
https://www.cbs.mpg.de/staff/prinz-10359

Abstract: Evidence from continuous search suggests that targets are
detected by default, whereas distractors are processed in considerable
depth. These observations shed light on task implementation and top-
down control. Task implementation builds on forming dynamic

distractor models, based on continuous integration of distractor-related
information. Top-down control builds on using these models for testing
upcoming stimulus information.

The target article claims that the analysis of visual search perfor-
mance must proceed to larger functional units, moving from
items to fixations. This commentary seconds and extends this
claim, drawing on earlier studies of active, continuous search.
By shedding new light on mechanisms of target detection and dis-
tractor processing, these studies provide complementary evidence
about task implementation and top-down control in search.

In continuous search tasks participants are exposed to large
arrays of items whose scanning requires extended fixation
sequences. Item arrays may be arranged in slim columns through
which the eye wanders from top to bottom (e.g., Neisser 1963)
or rectangular blocks that are scanned line-by-line, as in reading
(Prinz 1986). Items may be letters, digits, or other arbitrary ele-
ments. Typically, the task requires scanning through the array for
a pre-specified target, and the scan terminates upon its detection.
A typical scan will thus encounter a large number of distractors
before it eventually comes across the searched-for target.

Performance in such tasks seems to call for a simple and intui-
tive control model, claiming that searching for something requires
forming and maintaining a selective attentional set that highlights
target-related information. The searcher may, for example, be
seen to form a template of the target and maintain it in a
primed, pre-activated condition. With this template in mind, she
will then scan the search array until she encounters an item that
matches it. According to this view, search is controlled by
target-related information and target detection is accomplished
through target identification. This seemingly natural view was in
fact entailed in Neisser’s model of search control (Neisser
1967). Based on Selfridge’s Pandemonium architecture (Selfridge
1959), the model claimed that task implementation activates stim-
ulus analyzers for targets, but not for distractors, yielding deep
target processing but only shallow distractor processing. As a
result, distractors remain unidentified whereas target detection
is brought about by target identification.

However, there is now substantial evidence suggesting that this
view is fundamentally mistaken. The evidence applies to both
target detection and distractor examination (for overviews, see
Prinz 1977; 1986).

First, target detection does not require deep modes of target
processing. Targets are rather detected without being identified.
This conclusion is suggested by several converging observations.
(1) Pure detection: In tasks requiring parallel search for several
targets simultaneously, participants may detect upcoming target
locations without/before knowing which target is actually
present. Targets can thus be detected and localized before they
can be identified. (Neisser 1963; 1967, p. 100). (2) Pseudotarget
detection: When a novel distractor appears in the search array,
it is often treated as a target. Novel distractors are thus detected
without being searched for (Prinz 1979, Exp. 1; Prinz et al.
1974). (3) Detection at distance: Targets are often detected
prior to being fixated. They can thus be detected without being
the focus of spatial attention (Prinz 1983; Prinz & Kehrer 1982).
In sum, these observations suggest that targets are detected by
default, not by identification. Target detection seems thus to
rely on representational resources other than selectively primed
target templates.

Second, distractor examination does not rely on shallow modes
of distractor processing. Distractors are rather processed at con-
siderable depth. This conclusion is suggested by a further set of
observations: (1) Distractor complexity: Array complexity (as
defined by the size of the distractor set) is one of the most power-
ful drivers of search performance (Prinz 1979). (2) Distractor
redundancy: Sequential redundancy of distractor strings and
arrays has been shown to drive performance as well. Importantly,
distractor redundancy is automatically detected and exploited
(Prinz 1979). (3) Distractor transfer: In paradigms requiring
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switches between search tasks, substantial transfer is obtained
when the tasks share the same distractors (Prinz & Ataian
1973). Remarkably, this also applies to visually different distrac-
tors that share the same names (Prinz et al. 1972). In sum,
these observations suggest that distractor-related information is
not discarded at all. Instead, it seems to be automatically identi-
fied within fixations, updated and integrated across fixations, and
stored across consecutive trials.

Taken together, these findings suggest a framework for task
implementation and top-down control that is actually the
inverse of Neisser’s intuitive model (Prinz 1977; 1986; for over-
views of more recent evidence on information integration and
task-driven control see Schneider, 2013; Schneider et al. 2013).
This framework builds on three major claims: (1) Incoming infor-
mation is continuously processed and integrated over space and
time (i.e., within and across fixations, respectively). (2) Integration
processes generate, maintain and update a dynamic forward
model of current and impending distractor information (simulta-
neously for features, items, strings, etc.). (3) Once such a model
is in place subsequent fixation samples are tested against it. As
long as they match it, the scan is continued (= pure distractor
samples). However, when a sample fails to match it, the scan
gets disrupted for closer examination (= mixed distractor/non-dis-
tractor samples).

Regarding target processing, this framework accounts for
detection by default. Targets are oddballs that fail to match the
dynamic distractor model, be it at feature, item, or string level.
Regarding distractor processing, it accounts for task implementa-
tion and top-down control. Task implementation arises as a by-
product of automatic distractor processing: Continuous integra-
tion of distractor information within and across fixations generates
a dynamic distractor model that instantiates the control structure
for the current task. Top-down control is then based on using this
model for testing upcoming fixation samples.

These are lessons from continuous search. Why should we take
them to heart? On the one hand, continuous search differs from
discrete search in several important respects so that only some
of these lessons may be directly applicable to that domain. On
the other hand, continuous search must be considered a powerful
paradigm in its own right. It addresses processing mechanisms for
active, extended search as they underlie natural search episodes in
real-world scenes and settings.

Those pernicious items

doi:10.1017/S0140525X16000248, e154
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Abstract:Hulleman &Olivers (H&O) identify a number of problems with
item-based thinking and its impact on our understanding of visual search. I
detail ways in which item-thought is worse than the authors suggest. I
concur with the broad strokes of the theory they set out, and also clarify
the relationship between their view and our recent theory of visual search.

Our impression of a scene usually includes objects and their prop-
erties. When crossing the street, we consider the location and
speed of a nearby car. However, just because we recognize
“things” at the output of perception and employ high-level reason-
ing about objects, this does not mean that our visual systems
operate on presegmented things. This is a common and tempting
cognitive error, which can hamper uncovering the true mecha-
nisms of vision.

Objects make for a useful abstraction. It is natural, therefore,
that many theories of vision describe processes as operating on

objects and their features. For example, preattentive vision has
been depicted as encoding item locations and features. (This is dis-
tinct from knowing image features, such as the outputs of V1
cells.) According to this view, search is slow because serial selec-
tive attention is necessary to bind those features together. Such
word models enable easy intuitions and guide new experiments.
Furthermore, abstracting from the image input to things and
their features can sometimes make modeling tractable, as with
signal detection theory.
The authors argue that a focus on items has tainted our ideas

about search: it has hampered understanding search in real-
world images, for which the set size (number of items) is ill-
defined (Rosenholtz et al. 2007; Wolfe et al. 2011a; Zelinsky
2008); it has led to a focus on selective attention as the limiting
mechanism, discounting the role of eye movements; it caused
the field to focus on the easy end of the performance spectrum;
and it has led to over-estimation of the importance of item loca-
tion. I would argue that thinking about items is even more
pernicious.
Item-based theories have not merely biased our choice of

stimuli by limiting use of real-world images. Experimenters
often design stimuli to preserve the preeminence of the item.
One must avoid alignment, which might produce perceptual
groups, or else risk violating assumptions that the items can be
treated independently. This is analogous to visual short-term
memory experiments that seem designed to give the subject
little choice but to remember items; it should not surprise us
when slot models do well.
Relatedly, only a handful of experiments have studied the

effects of image transformations on search: What if we make
the items larger or the bars thinner, change the sign of contrast,
add noise to the display, or make the displays more dense?
Unless these transformations interfere with item visibility, none
should have an impact if items are the atoms of search. Yet
there is evidence that such transformations do have a significant
effect (e.g., Beck et al. 1987; Chang & Rosenholtz 2014;
Graham et al. 1992; Rubenstein and Sagi 1996).
More broadly, it is risky to think of the visual input as consisting

of an array of items with particular experimenter-defined features.
Vertical rectangular bars also contain horizontal edges; oblique
filters will also respond to those bars; the “white space” between
items also has features; and some features of the display may
have a scale larger than any individual items.
The dominance of item-based theories has led to a serious dis-

connect between theories that essentially operate on experi-
menter-labeled stimuli (items and their nominal features) and
those that operate on actual images. In working with real
images, a number of reasonable search strategies do not require
items as such, for example applying a template throughout the
image and looking for locations with a strong response (Zelinsky
2008). If one does attempt to implement item-based theories, it
quickly becomes clear that neither segmenting the items nor
determining their supposed “features” is trivial. One is left with
the puzzle of why one is “allowed” to use bound features to “pre-
attentively” segment the image into items, but not to recognize
the target.
It is hard not to think in terms of items. Despite their main

thesis, Hulleman & Olivers (H&O) suggest that target-distractor
discriminability is important for setting the size of the functional
visual field (FVF). Why discriminability of the items? This leaves
the puzzle of why search asymmetries abound, as surely target-dis-
tractor discriminability is generally the same as distractor-target
discriminability. We argue that the major determinant of search
performance is crowding (not retinal resolution), which demon-
strates that peripheral vision operates over sizeable patches, typi-
cally containing multiple items. Discriminability of patches is what
matters in this scheme (Rosenholtz et al. 2012b).
The authors allude to one theory attributing crowding to limited

attentional resolution (Intriligator & Cavanagh 2001). This is
subtly item-centric, presuming that attention aims to select only
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a single item. We have argued this is not ideal in real images
(Rosenholtz & Wijntjes 2014). Other theories of crowding also
describe mechanisms that operate on items (Greenwood et al.
2009; 2012; Levi & Carney 2009; Parkes et al. 2001; Põder and
Wagemans 2007; Strasburger 2005; van den Berg et al. 2012).
Recently we have shown that a number of results used to test
these item-based theories can instead be explained by the infor-
mation available in a rich set of image statistics (Keshvari & Rose-
nholtz 2016). These same statistics plausibly underlie scene
perception (Ehinger & Rosenholtz 2016; Rosenholtz et al.
2012a), suggesting a single encoding scheme could both extract
the scene context and support search, in agreement with H&O.

The target article presents clever and thoughtful critiques of
prevailing theories, and a new model. The parallels to recent
work in my lab are fairly clear (Rosenholtz et al. 2012b; Zhang
et al. 2015), though differences raise important questions. We
agree that search likely involves parallel processing, punctuated
by serial shifts of the point of fixation. Peripheral vision limits
the information available at a glance. Our view is that, rather
than being a mechanism, the FVF might describe the more infor-
mative image regions. It would degrade smoothly, with some
regions providing more information than others. It need not be
continuous; eccentric uncrowded regions might provide more
information than closer crowded ones. The authors are somewhat
unclear on these points: Does the FVF have hard edges, outside of
which no information exists for telling apart the target and distrac-
tor? Is it mechanistic or descriptive? Does some mechanism set
the size? If so, how, and why?

What fixations reveal about oculomotor
scanning behavior in visual search

doi:10.1017/S0140525X1600025X, e155
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Abstract: Hulleman & Olivers’ (H&O’s) conceptual framework does not
consider variation of fixation duration and its interaction with the size of
the functional viewing field (FVF). Here we provide empirical evidence
of a dynamic interaction between the two parameters, suggesting that
fixations, as the central unit in H&O’s framework, should be studied on
both the spatial and temporal dimensions.

By taking fixations, not individual items, as the central unit, Hulle-
man & Olivers (H&O) put forward a promising, unified account of
both eye movements and manual reaction times (RTs) in visual
search. However, their conceptual framework makes two oversim-
plified assumptions: (1) the size of the functional viewing field
(FVF) being solely dependent on the visual discriminability of
the search elements; and (2) constant FVF processing time (i.e.,
a constant fixation duration of 250 ms), ignoring any dynamic
interactions between the two parameters. Although the assump-
tion of constancy of fixation durations makes the framework
easily comparable with traditional, item-based selection models,
it limits the explanatory potential of H&O’s account, as we will
outline in this commentary.

It is generally accepted that “fixate” and “move” oculomotor
activities are governed by parallel “when” and “where” commands
generated across the entire visual-perceptual hierarchy (Findlay
& Walker 1999). Concerning top-down influences, fixation dura-
tions are influenced by task difficulty (Hooge & Erkelens 1998;
Moffitt 1980; Pomplun et al. 2013), memory about spatial context
(van Asselen et al. 2011; Zang et al. 2015), visual search strategy

(Geyer et al. 2007), and multisensory experience (Zou et al.
2012). For example, Geyer et al. (2007) compared fixation dura-
tions between static and dynamic search displays with identical
target-distractor discriminability, except that search items were ran-
domly reshuffled every 117 ms in the latter condition. Mean fixa-
tion duration, as well as the latency of the first saccade, was
increased by some 100–150 ms for the dynamic compared to the
static condition, although “standard” measures of search efficiency
(slope of the search function) were comparable between the two
types of display. These findings clearly suggest that fixational
dwell times are not solely under the control of the current
sensory environment, or in H&O’s terms, the perceptual discrimi-
nability of the search items. Instead, observers’ strategic efforts in
solving the task at hand must also be considered in accounting
for such extended fixation durations (Geyer et al. 2007).

Rather than being independent, in most cases fixation duration
and the FVF interact in a nonlinear fashion (Nuthmann et al.
2010; Unema et al. 2005). One strong piece of evidence of a
dynamic interaction between the two parameters comes from an
oculomotor study on the “pip-and-pop” effect (Zou et al. 2012).
In “pip-and-pop” visual search displays, beeps are synchronized
with (task-irrelevant) color changes of the target, which is presented
in a cluttered and heterogeneous item field (with search being
extremely “inefficient”). Zou et al. found that fixation durations
increased by some 150 ms for beep-present versus beep-absent
trials: an “oculomotor freezing” effect. Such extended fixations at
beeps allow information to be sampled over a larger FVF, as indi-
cated by larger saccade amplitudes immediately after the beeps. In
other words, beep-induced prolonged fixation times and subse-
quent large saccade amplitudes mediate fast detection of target
presence, yielding the “pip-and-pop” effect. This pattern also sug-
gests that the oculomotor scanning strategy can affect the rate of
information processing, as evidenced by increased information
uptake per fixation for the beep-present relative to the beep-
absent condition. Another very recent study (Zang et al. 2015) on
context-based guidance of visual search also revealed a beneficial
effect of extended fixation duration on task performance. In this
study observers were first trained with an artificial FVF size, imple-
mented by a gaze-contingent tunnel-viewing technique. With 4–5
items visible inside of the FVF, the mean fixation duration was
already extended in the training session for repeated “old,” com-
pared to randomly generated “new,” display (item) layouts.
Further, the scan path for old relative to new displays was closer
to the optimal scan path, indicating that learned context improves
the efficiency of oculomotor scanning. Increased fixational dwell
times and shortened scan paths for old relative to new displays
remained evident even after the constraining tunnel view was
removed from the task. Such dynamic adjustments of fixation dura-
tion and saccade amplitude are quite common during scene search.
It has been shown, for instance, that fixation duration and saccade
amplitude gradually change over the first few seconds, and then
approach their asymptotic levels (Unema et al. 2005). Both asymp-
totes, however, depend on the number of objects in the scene,
which indicates that the complexity of the scene, too, changes ocu-
lomotor scanning.

These findings, amongst others, provide converging evidence
that the size of the FVF and fixation duration are not determined
by visual discriminability alone, as assumed by H&O. Rather,
oculomotor scanning is dynamic in that the size of the FVF and
fixation duration must be considered together to discern
moment-by-moment adjustments of information processing.
Despite the H&O conceptual framework’s current lack of flexible
oculomotor parameters, the idea of fixation as a central processing
unit of visual search remains very promising. However, to incorpo-
rate the above findings of dynamic interactions between fixation
duration and saccade amplitude, we propose that fixational eye
movements are best characterized by both spatial (i.e., the size
of FVF in H&O terms) and temporal (i.e., fixation duration)
factors. Combining the two could provide insight into how oculomo-
tor scanning strategies influence the fixation-by-fixation information
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processing rate,whichmight turnout tobe thedistinguishing feature
for comparing different visual search tasks.

Item-based selection is in good shape in visual
compound search: A view from
electrophysiology

doi:10.1017/S0140525X16000261, e156
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Abstract: We argue that although the framework put forward by
Hulleman & Olivers (H&O) can successfully explain much of visual
search behaviour, it appears limited to tasks without precise target
identification demands. In particular, we contend that the unit of
selection may be larger than a single item in standard detection tasks,
whereas the unit may mandatorily be item-based in compound tasks.

The target article offers an exciting new perspective on how the
cognitive system samples visual input for relevant information.
Although we are in agreement with this account with regard to
detection tasks, our commentary focuses on a potentially crucial
limitation: generality across task settings. Despite Hulleman &
Olivers’ (H&O’s) endeavour to highlight similarities between dif-
ferent search tasks, we argue that this issue deserves more atten-
tion. In particular, we contend that item-based selection is likely
to be mandatory in tasks that require precise, focal-attentional
stimulus analysis. Here we discuss three experimental findings
that challenge the notion that the search process is equivalent in
detection and compound tasks.

As noted by H&O, some of our findings indeed suggest that
attentional selection is similar across tasks (Exp. 1; Töllner et al.
2012b). This view is supported by the activation profile of the Pos-
terior Contralateral Negativity (PCN, or N2pc) – an ERP wave
generally agreed to reflect attentional selection (Eimer 1996;
Luck & Hillyard 1994; Töllner et al. 2012a) –which was elicited
equally for search tasks in which observers had to detect, localize,
or identify physically identical targets. However, this pattern was
restricted to conditions with relatively high target prevalence
(between 66.6% and 100%). In the same study (Exp. 2), we
observed a strong influence of target prevalence on attentional
selection: Using a detection task, PCN amplitudes increased grad-
ually with decreasing target frequency (80% < 50% < 20%). Fol-
lowing one proposal according to which the PCN may represent
the target’s saliency/priority signal on the attention-guiding
“master map” (Töllner et al. 2011; 2015a), this amplitude modu-
lation may result from a cortical amplification mechanism
(Egner & Hirsch 2005) that comes into play when searching for
low-prevalence targets. In particular, the visual system may
adapt to reduced target probabilities by boosting incoming rele-
vant information through a context-sensitive amplifier that keeps
track of environmental statistics. This biasing of target signals
may automatically translate into enhanced activations at the next
processing stage – the attention-guiding master map (likely repre-
sented by the PCN) – thereby raising detectability of rare targets
to the level of frequent targets. Another factor that may have con-
tributed to this amplitude gain is refractoriness (Woods et al.
1980). It is conceivable that neural populations associated with
the coding of attentionally selected targets are more prone to
refractoriness in conditions of 80% target prevalence in which
the average inter-target interval was 2.5 s, as compared with

20% prevalence with, on average, a 10-second interval. Whatever
the exact interplay of mechanisms, findings of attentional selection
being frequency-dependent have implications for H&O’s frame-
work. Because a target is present on every trial in the typical com-
pound task but only on half of the trials in the standard detection
task, we surmise that attentional selection is not directly compara-
ble among different search tasks using variable target frequencies.
Furthermore, H&O propose that compound-search tasks involve

a cascade of processing steps, with sequential reductions of the func-
tional visual field (FVF) to meet the requirements of focal-atten-
tional analysis: the higher the requirements, the smaller the FVF.
Critically, H&O assume that the first stage of these processes is
similar across tasks, and that the initial size of the FVF depends
exclusively on target discriminability. Although we agree with the
general idea, we doubt that the initial stage of target selection is
entirely detached from the subsequent target identification stage.
Our scepticism derives from recent EEG evidence (Mazza et al.
2007; Rangelov et al. 2013b; Töllner et al. 2013) demonstrating
that target identification involves a post-selective process that
extracts detailed object information from working memory (WM).
Specifically, we observed the CDA (or SPCN) wave – a well-estab-
lished ERP marker of the maintenance of (Vogel & Machizawa
2004; Wiegand et al. 2014) but also the access to (Töllner et al.
2014; 2015b) WM representations – being elicited exclusively in
target identification tasks, but not in tasks requiring simple target
detection or localization. That target identification is carried out in
WM may consequently place further constraints on the number of
items participants may select in parallel in the first place. Given
that WM is limited in capacity to about three to four items (Cowan
2001), it would appear plausible that participants strategically
adjust the sizeof theirFVF inrelation to their availableWMcapacity.
Note that this consideration is strikingly supported by the fact that
three to four objects match exactly the target number at which
both the PCN (Mazza et al. 2013) and the CDA amplitudes (Vogel
& Machizawa 2004) reach asymptotic level. It is as if the stage of
attentional selection (PCN) were naturally tuned to take in only an
amount of information that can be fairly handled at subsequent
WM stages (CDA). Moreover, no such set size modulations of the
PCN are evident if the task requires simple detection, as opposed
to exact enumeration (in WM), of multiple targets (Mazza & Cara-
mazza 2011). In the light of these findings it appears unlikely that
the initial stage is identical across tasks. Instead, we argue that,
while in standard detection tasks the unit of selection may well be
set according to target discriminability, in compound tasks the unit
is additionally constrained by individuals’ capacity to evaluate
target information in WM. The unit of selection may even scale
down to a single item; for example, when the task requires precise
focal-attentional analysis in the face of highly similar distractors.
Finally, investigations of search slopes indicate qualitative differ-

ences between detection and compound tasks. Specifically, in detec-
tion tasks reaction times to pop-out targets remain constant across
different display densities (Young & Hulleman 2013), whereas reac-
tion times to the same targets decrease as more distractors are
added in compound tasks (Bravo & Nakayama 1992; Rangelov
et al. 2013a). In H&O’s framework, search slopes are determined
by the FVF size, which, in turn, depends on target discriminability.
Consequently, FVF size should be the same for similar targets. As
negative search slopes indicate, however, this is not the case.

The FVF might be influenced by object-based
attention
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Abstract: Hulleman & Olivers (H&O) argue that the primary unit in
search should be fixations, and in doing so posit a Functional View Field
(FVF). There is evidence from the object-based visual attention
literature that the FVF may not process visual information uniformly.
Here I sketch how object-based attention may influence processing
within the FVF as well as the shape of the FVF.

Hulleman & Olivers (H&O) have given a deeply convincing case
for why we should consider fixations, and not items, as the funda-
mental unit of search. Central to their framework is the Func-
tional View Field (FVF), which is an area of the visual field
centred on fixation, where an item can be expected to be detect-
able. Towards the end of their article, H&O pose the question of
what factors determine the size of the FVF. One important ques-
tion they did not ask is whether the FVF can change shape, and if
so, under what circumstances. Moreover, H&O leave open the
possibility of grouping mechanisms within the FVF. Here I con-
sider how findings relating to object-based attention provide pos-
sible answers to these questions.

To begin, it is accepted that visual attention has both spatial-
and object-based components (Soto & Blanco 2004). Spatially
based visual attention involves attention being directed to a
general area of the visual scene (Downing 1988). Object-based
visual attention (OVA), on the other hand, is directed toward
objects or groups of elements adjoined by Gestalt principles
(Neisser 1967), and it has been supported in part by findings
that, all else being equal, RTs are faster when a cue and target
appear within the same object compared to when they are not
(Egly et al. 1994). While there is an obvious spatial component
to visual search, it is interesting to consider how, in the context
of H&O’s framework, the FVF may process information given
what is currently known about object-based attention.

Evidence for intra-FVF grouping can be tentatively drawn from
studies using the aforementioned cued-rectangle paradigm. For
example, Norman et al. (2013), report an object-based effect
with rectangles that were not conscious to the viewer. Viewers
fixated on a point, then made a timed response to a target stimulus
preceded by a cue. As with previous findings using this paradigm
(e.g., Egly et al. 1994), viewers were faster to detect the target
when it appeared within the same object as the cue. Applied to
H&O’s framework, this would suggest that once a fixation is
made at a given location, such as on a cue, the FVF’s contents
are not processed uniformly (as H&O readily admit); rather,
they are subject to grouping mechanisms that prioritise some
visual elements within the FVF over others.

There is, however, disagreement over the mechanisms of
object-based attention. Some argue that several OVA effects
exemplify attentional prioritization of locations that simply
assigns a higher probability of the target appearing within the
boundaries of an attended object (Shomstein & Yantis 2002;
Greenberg et al. 2015), not unlike priority of scene locations
based on local contrast (e.g., Wolfe 2010). Thus, any possible
grouping in the visual scene may facilitate search, but only
because it guides fixations, not because of any alteration of the
FVF. As a result my interpretation of Norman and colleagues’
(2013) findings remains tentative, as they did not account for
eye-movement during their task.

Howmight OVA influence the shape of the FVF? One way is by
sensory enhancement (Desimone & Duncan 1995). Imagine that
the “default” FVF during visual search of a given difficulty is a cir-
cular patch with fuzzy boundaries. When there are no sufficiently
strong grouping factors between visual elements, such as in most
search arrays, only the contents of the circular FVF are processed.
However, if a peripheral visual element is grouped with an
element within the “default” FVF, the signal from the peripheral
visual element is “boosted” and is subsequently processed more
thoroughly than it would have been otherwise, effectively expand-
ing the FVF. Wannig et al. (2011) provide evidence to support
such an account. They recorded two receptive fields (area V1)
of monkeys during a visual task. The monkeys were trained to
foveate on a target line stimulus, and during the task the target

line was flanked by task-irrelevant line stimuli. After fixation on
the task-relevant stimulus, the authors found an increase in activ-
ity from the receptive field corresponding to a task-irrelevant line
stimulus, but only if the task-irrelevant stimulus was collinear with
the task-relevant stimulus. This demonstrates that: (1) attentional
spreading takes place in early representations of visual elements
grouped by Gestalt factors; (2) this attentional spreading occurs
automatically (i.e., attention spreads to task-irrelevant stimuli).
Further experimentation will be needed to see whether this
kind of attentional spread has any bearing on visual search.

H&O remarked that their framework has no problem explain-
ing search across a messy scene bereft of clearly-defined items.
I agree, but I also stress that there is still much room within this
framework for a scene to be divided into object-like groupings
during search. It would be out of neglect for what is known
about object-based attention to assume that the FVF always pro-
cesses information irrespective of object groupings. Furthermore,
although retinal physiology is no doubt crucial in determining the
boundaries of the FVF, we have good reason to believe that these
boundaries are also subject to early “signal boosting” as a result of
Gestalt grouping.

Looking further! The importance of embedding
visual search in action
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Abstract: A unified account of visual search in complex everyday
environments requires additional deliberations on the functional
grounding of Hulleman & Olivers’ (H&O’s) functional viewing field
(FVF) model. Their model can accommodate exploitation of information
that is distributed across the immediate environment. Yet the differences
in search between genuinely interacting in the environment and merely
watching it should challenge researchers to look further.

The primary function of visual search is to gather information for
guiding actions with persons, objects, and events in everyday envi-
ronments. For example, a pedestrian walking down a busy city
street, and a police officer chasing a suspect are examples of
complex everyday environments that require people to continu-
ously search information to act adaptively. Comparably, during
expert search, a soccer goalkeeper trying to stop a penalty kick
scans the penalty taker’s body (e.g., the eyes, hips, legs, feet) for
information that guides the decision of when and where to move.

In contrast to everyday environments, participants in a typical
visual search research paradigm are seated and required to iden-
tify, as quickly as possible, an L among T’s presented on a monitor.
It is unlikely that this seated-monitor paradigm does justice to the
intricacies of visual search in complex environments; this may be
equally true for the associated models that presume that visual
search proceeds on the basis of individual items (Treisman &
Gelade 1980). Conversely, Hulleman & Olivers’ (H&O’s) FVF
model takes the fixation (and thus eye movements) as the
central unit of visual search. This is an important step because it
opens up the possibility to go beyond research paradigms that
only require participants to (passively) watch screens. In particu-
lar, H&O’s perspective potentially permits researchers to expli-
cate the observed pick-up of global information that occurs
when searching complex everyday environments (Diaz et al.
2012). However, to fully capture the richness of visual search in
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complex everyday environments, H&O’s model would benefit
from a thorough consideration of the functional characteristics
of visual search.

If visual search functions to gather information for guiding our
interactions with the environment, where the information resides
and what action the information controls is of key concern. Gibson
(1979) asserted that information resides in structured energy
arrays that surround us. For example, the optic array is the sur-
rounding light patterned by reflection against the surfaces,
objects and persons (including the observer!) of the environment.
Hence, the structured light patterns are specific to, and inform
about, the environment. Accordingly, perception is the pick-up
of this information in the optic array. Thus, it is crucial to recog-
nize that an observer always moves, even if these movements
would be restricted to the eyes! The information the observer
exploits is a continuous flux, but within these unceasing transfor-
mations some patterns remain unchanged or invariant. Broadly
speaking, Gibson proposed that invariances specify the (unchang-
ing) environment, while the changes specify how the observer
relates to the environment; they inform the observer about the
actions that the environment affords. This implies that the observ-
er’s body, head, and eye movements co-structure information for
guiding the observer’s interaction with the environment, and thus
must be part of any unified account of visual search.

To illustrate let us return to the soccer goalkeeper trying to stop
a penalty kick. Typically, the ball moves at a speed that leaves a
goalkeeper insufficient time to decide which side to dive on the
basis of ball flight information. Therefore the goalkeeper must
anticipate the direction of the dive based on information that
resides in the penalty taker’s movements. Expert goalkeepers dis-
tinguish themselves from their less successful counterparts in how
they visually search the penalty taker’s body for gathering this
information. They make a small number of fixations of longer
duration to fewer locations (Savelsbergh et al. 2002). Intriguingly,
they particularly make long fixations on the empty space in
between the non-kicking leg and the ball instead of making a
sequence of fixations between different locations (Piras &
Vickers 2011). This finding concurs with analyses that the most
reliable information is distributed across different body locations
rather than being located at one joint or body part (Diaz et al.
2012). H&O’s FVF model can easily accommodate these observa-
tions. Within the model the FVF is defined as “the area of the
visual field around fixation from which a signal can be expected
to be detected” (sect. 5.1, para. 2). Importantly, the field is not
fixed but varies in size. The smaller the field, the more fixations
are needed and the more time the observer needs to search.
Accordingly, expert goalkeepers may have a larger FVF than
less skilled goalkeepers, allowing them to exploit the distributed
information with less extensive visual search. This skilled search
behaviour potentially provides experts with more reliable and
timely information for ball interception.

H&O’s perspective is largely limited to (typical) seated-monitor
paradigms, which address how eye movements are used to search
the environment. Yet in complex everyday environments, eye
movements are but one means of gathering information, as a
person’s search also relies heavily on head and (whole) body move-
ments. The over-reliance on seated-monitor experimental tasks
leads to a limited view of visual search and may especially
obscure its functional aspects. Perception and action, even in an
identical environment, exploit different information and induce
different patterns of visual search (Van Doorn et al. 2009). In
this respect, we have previously reported that a soccer goalkeep-
er’s visual search is fundamentally different when watching a
penalty taker on a screen and verbally predicting kick direction
compared to when actually facing a penalty taker in real-time
and attempting to intercept the ball (Dicks et al. 2010). Perhaps
surprisingly, on the pitch less time appears to be spent searching
the body, while fixation towards the ball increases. It is likely that
the different functional requirements affect the spatio-temporal
structure of visual search in many more ways than a change in

the magnitude of the FVF. A crucial challenge for any account
of visual search, including the FVF model, is to spell out in
more detail how functional requirements systematically affect
the eye, head, and body movements for gathering information
in complex everyday environments. To this end, looking further
than monitors is a necessity!

Don’t admit defeat: A new dawn for the item in
visual search
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Abstract: Even though we lack a precise definition of “item,” it is clear
that people do parse their visual environment into objects (the real-
world equivalent of items). We will review evidence that items are
essential in visual search, and argue that computer vision – especially
deep learning –may offer a solution for the lack of a solid definition of
“item.”

To say that items do not play a role in visual search is to admit
defeat. Even though we lack a precise definition of “item,” it is
clear that people do parse their visual environment into objects
(the real-world equivalent of items in visual search). In this com-
mentary, we will review evidence that items are essential in visual
search; furthermore, we will argue that computer vision – espe-
cially deep learning –may offer a solution for the lack of a solid
definition of “item.”
In the model of Hulleman & Olivers (H&O), search proceeds

on the basis of fixations that are used to scan a visual scene for a
target. Although we appreciate its parsimony, the model lacks a
crucial aspect of visual search: the decision where to look next.
The model simply assumes that an arbitrary new location is
selected. Yet there is abundant evidence that fixation selection is
not random but rather results from integration of top-down and
bottom-up influences in a common saccade map (Meeter et al.
2010; Trappenberg et al. 2001). That is, we look mostly at
things that are salient or behaviorally relevant (Theeuwes et al.
1998) and, crucially, behavioral relevance is related to how we
parse visual input into items (e.g., Einhäuser et al. 2008). Consider
repetition priming: People preferentially look at distractor items
that resemble previous target items (Becker et al. 2009; Meeter
& Van der Stigchel 2013); or its complement, negative priming:
People avoid distractor items that resemble previous distractor
items (Kristjánsson & Driver 2008). In addition, there are many
object-based attention effects in visual search. For example, we
tend to shift our attention and gaze within, compared to
between, objects (Egly et al. 1994; Theeuwes et al. 2010); and,
if an attended object moves, the focus of attention follows
(Theeuwes et al. 2013). We could list even more object-based
effects, but our main point is: Items matter, whether we know
how to define them or not. Therefore, by denying a role for
items in visual search, H&O ignore, or at least downplay the
importance of, a substantial part of the visual-search literature.
But how can there ever be a role for items in models of visual

search if we do not even know what “item” means? Possibly, our
language simply lacks the vocabulary to define “item” or “object.”
Many researchers, such as David Marr, have speculated that it is
impossible to define “object” (Marr 1982) – and we agree. But
rather than abandon items altogether (and admit defeat!) we
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should adopt recent computational approaches to object recogni-
tion as an alternative to formal definitions.

Consider a modern deep-learning network: an artificial neural
network that consists of many nodes across many layers. (We
will not discuss one specific network, but focus on the general
architecture that is shared by most networks.) Such models are
inspired by the architecture of our visual system by implementing
a complex arrangement of nodes, each of which only looks at small
portions of the input image (Krizhevsky et al. 2012). First, this
network is trained on a large set of example images, which can
be either labeled (e.g., Krizhevsky et al. 2012), unlabeled (e.g.,
Le et al. 2012), or a mix (LeCun et al. 2010). Crucially, in all
cases training occurs by example, without explicit definitions.
Next, when the trained network is presented with an image,
nodes in the lowest layers respond to simple features, such as
edges and specific orientations (Lee et al. 2009), reminiscent of
neurons in lower layers of the visual cortex (Hubel & Wiesel
1959). Nodes in higher layers of the network respond to progres-
sively more complex features, until, near the top layers of the
network, nodes have become highly selective object detectors;
for example, a node may respond selectively to faces, cats,
human body parts, cars, and so forth. (Le et al. 2012). These
nodes are reminiscent of neurons in the temporal cortex, which
also respond selectively to object categories such as faces or
hands (Desimone et al. 1984), 194). Importantly, deep-learning
networks detect objects in those real-world scenes that H&O con-
sider problematic (He et al. 2015; Krizhevsky et al. 2012); and
they do so without explicit definitions, seemingly like humans do.

Combining deep-learning networks with traditional visual search
models could explain how people explore their environment, item
by item. As a starting point, we could take the model of H&O, and
replace their bag of items with active nodes in high layers of a deep-
learning network – that is, nodes that respond selectively to high-
level features of the input (for example, cats), and for which the
activation exceeds a certain threshold (Le et al. 2012). This would
provide H&O’s model with a bag of items to search through,
without being fed any definition of “item.”Of course, in its simplest
form, this combined model is far from perfect. First, it does not
explain object-based effects of the kind that we discussed above.
Second, it assumes that the entire visual field is parsed at once,
and does not take into account eye movements – the very idea
that H&O rightfully want to get away from. But this simple com-
binedmodel would be a good starting point that combines cognitive
psychology with computer vision. And when combining principles
from both disciplines, improvements readily come to mind. For
example, a deep-learning network could be fed with eye-centered
visual input that takes into account the functional viewing window.

In conclusion, we feel that H&O have been too quick to admit
defeat. They have constructed a parsimonious model that explains
visual-search behavior well without requiring items. Now all we
need to do is put the item back in.

Where the item still rules supreme: Time-based
selection, enumeration, pre-attentive
processing and the target template?
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Abstract: I propose that there remains a central role for the item (or its
equivalent) in a wider range of search and search-related tasks/functions
than might be conveyed by the article. I consider the functional
relationship between the framework and some aspects of previous
theories, and suggest some challenges that the new framework might
encounter.

Hulleman &Olivers (H&O) make a convincing case that research-
ers have tended to study and model search either solely from a
covert attention or solely from an eye movement (EM) perspec-
tive and that if the field is to move forward there needs to be a
concerted effort to combine the two – a sentiment with which I
agree fully. The message is that we should replace the idea of
the item with a combination of EMs and the extraction of informa-
tion from fixations via a Functional Viewing Field (FVF) mecha-
nism/perspective. EMs guide the FVF sequentially to regions
from which information is extracted in parallel until the target is
found. Because the size of the FVF changes as a function of
target discriminability there is no role for the “item” within this
framework. H&O argue that even when the task is to locate a
target, the search process itself need not be item-based. Nonethe-
less, this of course still leaves (some) room for the item in visual
search (it is the product of the search, and the target “template”
will likely always be item-based).

In response, I will argue that item representations do play a
central role in at least some search tasks. The “preview benefit”
(Watson & Humphreys 1997) is just one finding that supports
this view. In preview search, one set of distractors is presented
(previewed) before a second set that contains the target. We
find that people can ignore the previewed items and restrict
their search to the second set of stimuli. According to the inhibi-
tory visual marking account, this is achieved with stationary stimuli
by developing a template of the locations of the old items and
applying inhibition to those locations. This biases attention (and
eye movements) away from those items, creating a search advan-
tage for newly arriving stimuli. Granted, the localization of the
initial items might not need to proceed via an item-by-item
process (see above). However, because the inhibitory template
is item- (location) based, and influences the subsequent search
process, I would suggest that here “the item” (and its location)
continues to play a crucial role in the subsequent search process
itself. Indeed, if the locations of the old items change when the
new items arrive, the preview benefit disappears (e.g., Zupan
et al. 2015). In contrast, when preview items move, inhibition is
applied mostly to feature maps (Andrews et al. 2011; Watson &
Humphreys 1998), removing the need to track, localize, or
process individual items (an example of part of a search theory
in which the item is explicitly not important).

A second example in which the item probably remains salient
can be found in enumeration tasks. Here people do not search
for a single target but have to search for all targets (with or
without the annoyance of distractors; Trick & Pylyshyn 1994)
and report how many are present. In contrast to absent/present
search, it is essential that items are not revisited because re-count-
ing an item will lead to an error. With relatively coarse FVFs and
an overlapping sequence of FVFs, ensuring that items are not
recounted could be difficult. Perhaps here FVFs would be so
small that search would effectively be item-by-item. Indeed,
beyond four items enumeration appears to be especially reliant
on EMs (Simon & Vaishnavi 1996; Watson et al. 2007).

Selection in time and counting things are two conditions in
which the item might remain central to the task, but there are
others. I wonder, for example, how contextual cuing (Chun
2000) will work without the spatial configuration of “items.”

Moving on, does the FVF implicitly maintain the notion of an
item? H&O argue that theories such as Attentional Engagement
Theory (AET) are item-based because individual stimuli are
grouped and rejected until the target is found. However, the
FVF argument proposes that a stimulus emerges from the FVF
which presumably is the result of some kind of competition
between visual entities within the FVF. Is it possible that one
episode of FVF processing equates to an entire search process
in AET? So have we simply replaced the “item” from AET with
more abstract visual entities within the FVF? Presumably there
needs to be some individuation of “things” within the FVF for a
target to emerge – aren’t these “things” still just items? Notably,
even though just a proof of concept, the entities fed into H&O’s
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simulation are discrete 1s and 0s. Are we really just arguing about
how we define an item? Have we just replaced competition
between items with competition between more abstract entities
within the FVF?

H&O rightly state that the majority of studies have focused on
relatively efficient search and this is perhaps because of the preoc-
cupation with using small display sizes and easily separable stimuli.
However, I would suggest that a focus on eye-movement-based
measures could also bring with it disadvantages. For example,
Watson et al. (2005) have argued that tasks that require eye move-
ments can obscure interesting covert attentional differences
because eye movements are relatively slow and noisy. In their
case, the need to make EMs in a task appeared to wash out/
obscure age-related attentional differences. Thus, a focus on
EM measures, or worse, an encouragement to design studies
that force EMs to be made, might lead to interesting effects
being missed.

Finally, if we abandon the notion of the item, then what should
we use to evaluate search? Will we rely just on EM frequency, or
will we estimate the size of the FVF, and if so how? Do we run the
risk of the circularity that H&O warn against: a search is difficult
because it produces a small FVF; a small FVF is needed because
target discrimination is difficult? Rather than abandoning the idea
of an item altogether, perhaps we need a better way of defining
what an item is.

“I am not dead yet!” – The Item responds to
Hulleman & Olivers

doi:10.1017/S0140525X16000303, e161

Jeremy M. Wolfe
Departments of Ophthalmology and Radiology, Harvard Medical School, Visual
Attention Lab, Brigham and Women’s Hospital, Cambridge, MA 02139-4170.
jwolfe@partners.org
http://search.bwh.harvard.edu/new/index.html

Abstract: The item can only be dispensed within artificial tasks that,
although useful in the lab, do not reflect the real world. There, the
attended item is the goal of search. Hulleman & Olivers’ (H&O’s)
model can ignore the item only by reducing search to the question of
whether a patch of 0s (distractors) contains a 1 (target).

Hulleman & Olivers (H&O) describe several tricky issues in visual
search, relating to relationships among covert attention, eye
movements, and the inhomogeneity of the visual field.
However, I believe that their proffered resolution of those
issues is fundamentally incorrect. Their title promises “the
impending demise of the item.” “The focus on the item as
the core unit of visual search is rather problematic,” they say
(sect. 4). H&O’s basic misstep is to look for the core purposes
of search in some tricky aspects of the search literature rather
than asking why people and animals search. Outside of the lab,
we are almost always searching for something. The goal of
search may be ambiguously defined (e.g., “threat” in airport
luggage or a suspicious mass in a mammogram) and that goal
may be hard to segment from the background. Still, that goal is
some thing. It is an item that we need to search for because our
capacity is limited and we cannot fully process the entire scene
at once (Tsotsos 1990). Following Treisman (1996), I would
argue that we search because we need to attend to an item to suc-
cessfully “bind” its features, and we generally need to bind fea-
tures to recognize items that are the goals of search.

It is true that binding is not always necessary to do laboratory
search tasks (see sect. 4.1). In some cases, the unbound image sta-
tistics are enough to classify displays as target-present or -absent.
Very rapid decisions about the presence or absence of an animal
in a scene (Li et al. 2002) would be one example. However,

when H&O invoke these abilities and conclude that a model, like
our Guided Search (GS) model, “overestimates the role of individ-
ual item locations” (sect. 4.2), they are, again, thinking more about
the lab than about the world. It may be that some “present/absent
decisions are based on parallel extraction of properties of groups of
items within local areas” (sect. 4.2), but, as we found while studying
the ability to detect breast cancer in a flash, these “gist” signals are
often not adequate to locate the target (Evans et al. 2013b). In real-
world search, you want to know the actual location of your keys, not
just that the image statistics indicate their presence at above chance
levels – interesting as that may be.
H&O’s model is built on the functional viewing field (FVF) that

surrounds each fixation. They point out, quite fairly, that classic
models such as GS have tended to ignore the inhomogeneity of
the retina and the role of eye movements. As a matter of conve-
nience, we have often used large, vivid stimuli that can be resolved
anywhere in the display. We have been interested in the covert
deployments of attention and have designed experiments that
make the overt deployments of the eyes less critical. H&O cor-
rectly argue that models such as GS have been guilty of oversim-
plification in regarding eye movements as nothing more than
coarse indicators of the more rapid deployments of attention.
Covert attention is processing items at a rate of, perhaps, 20–40
items per second. That means that approximately 5–10 items
are processed on each fixation. GS has not concerned itself very
much with how those fixations are chosen; that is an omission.
As H&O review, GS proposes a “car wash” model in which the
5–10 items are selected, one after the other, during fixation. As
in a car wash, though they enter in series, multiple items are pro-
cessed at the same time because it probably takes at least 200–
300 ms to process a selected item to recognition. H&O might
have been proposing that, on each fixation, all items in the FVF
enter the car wash at the same time. Discriminating such parallel
selection of a clump of items from rapid serial selection of each of
those items is extremely difficult. Theoreticians from one camp
can almost always account for the data from the other.
However, H&O are not proposing parallel selection of clumps

of N items. They want to get rid of the items and parallel process
everything within the FVF. This raises questions that are left for
future work in their model. Consider a classic conjunction
search for red vertical lines among red horizontal and green ver-
tical distractors. How do we tell the difference between an FVF
that contains a red, vertical item and one that contains red and
vertical features that are not bound to the same item? It is not ade-
quate to propose that the system can determine when red and ver-
tical occur in the same place. Think of black vertical lines on a red
background. Red and vertical are in the same location, but observ-
ers are not confused into thinking that these are red vertical
targets (Wolfe & Bennett 1997).
If H&O are wrong to condemn the poor item to death, why

does their model work so well? Search efficiency, as indexed by
the slope of RT × set size functions, is a continuum. In the
H&O model, the FVF is a parameter that scales efficiency.
Hard tasks produce small FVFs and easy tasks produce big ones
(Nakayama 1990). What determines FVF size? That is not clear
in this schematic model so, really, FVF just serves as a free param-
eter to scale those slopes appropriately. The model also avoids
other difficulties by coding all distractors as “0” and the targets
as “1.” A parallel process, operating over the whole FVF, won’t
have much trouble detecting that target, but applying this
model to real stimuli (e.g., conjunctions) might be a challenge.
Models such as GS also have parametric variations in difficulty

that will scale search efficiency. In GS, more guidance by basic
features (and by scene structure in current versions of GS)
allows attention to be more efficiently directed to likely candidate
targets. If you can exclude half of the items because they are, for
example, the wrong color, your slope is cut in half. I strongly
suspect that any mechanism for controlling FVF size will look a
lot like GS’s guidance, and I strongly suspect that the item, hard
as it is to define, will be there to be selected.
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The “item” as a window into how prior
knowledge guides visual search
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Abstract: We challenge the central idea proposed in Hulleman & Olivers
(H&O) by arguing that the “item” is still useful for understanding visual
search and for developing new theoretical frameworks. The “item” is a
flexible unit that represents not only an individual object, but also a
bundle of objects that are grouped based on prior knowledge.
Uncovering how the “item” is represented based on prior knowledge is
essential for advancing theories of visual search.

Hulleman & Olivers (H&O) present an elegant framework that
aims to help us better understand visual search mechanisms.
This framework proposes using fixations, rather than individual
items, as the conceptual unit of visual search. The general ideas
in the framework are very useful because it can account for
many extant findings and identifies some shortcomings (such as
embodied visual search) in the existing visual search literature.

Although this framework has its strengths, we disagree with the
main argument that the item is no longer useful for understanding
visual search. We do, however, agree with Olivers’ earlier argu-
ment (Olivers et al. 2011) that visual search relies on an attentional
template – a prioritized working memory representation – that is
typically determined before starting a task via prior knowledge
and/or explicit instructions. This attentional template evolves in
various ways on the shorter time scale as the task progresses
(e.g., Nako et al. 2015) and on the longer time scale as the
learner gains more experience (e.g., Wu et al. 2015).

We argue that the “item” is still useful for understanding visual
search and developing new theoretical frameworks. Critical to
our argument is the idea that the “item” (contained in the atten-
tional template) is a flexible unit that can represent not only an indi-
vidual feature or object, but also a bundle of features or objects that
are grouped based on prior knowledge. Such grouping, via either
explicit or implicit cues, can result in the unitization of features
or objects into an “item,” which increases the amount of informa-
tion held in working memory during visual search, and thus typi-
cally facilitates search performance. However, because many
visual search studies control for prior experiences by using simple
visual stimuli or equating prior knowledge across conditions, the
nature and the limits of the attentional template are unclear. The
use of prior knowledge is only mentioned briefly in H&O, but we
believe that incorporating prior knowledge into visual search
frameworks is critical for advancing the research area.

A growing number of studies on visual search (as well as visual
working memory) demonstrate the benefits of prior knowledge on
the outcomes of search tasks. For example, Nako et al. (2014a) con-
firmed that searching for one item (e.g., a letter) ismoreefficient than
searching for two or more items (e.g., multiple letters), as evidenced
by both neuralmeasures (attenuatedN2pc) and behavioralmeasures
(slower reaction time and lower accuracy). Importantly, they demon-
strated that if category knowledge canbeappliedduring visual search,
then one-item search and multiple-item search show very similar
neural and behavioral outcomes. Nako et al. (2014b) and Wu et al.
(2015) replicated and extended this initial finding using real-world
objects, such as clothing, kitchen items, and human faces. In addition
to prior knowledge about object category, grouping cues can also
improve visual search. For example, Wu et al. (2016) showed that a
heterogeneous set of novel alien stimuli grouped by an abstract
rule (same versus different) can facilitate search performance.

Grouping of objects can occur not only by means of shared fea-
tures and spatial proximity, but also by reliable co-occurrences

over space and time. The visual system is remarkably efficient at
detecting probabilities of co-occurrences among individual
objects (e.g., Fiser & Aslin 2001; Turk-Browne et al. 2005), and
this ability is present in early infancy (Fiser & Aslin 2002;
Kirkham et al. 2002; Saffran et al. 1996; Wu et al. 2011). A
direct consequence of learning the co-occurrences between
objects is that the individual objects are implicitly represented
as one unit (Mole & Zhao 2016; Schapiro et al. 2012; Wu et al.
2011; Wu et al. 2013; Zhao & Yu 2016). Such unitized represen-
tations implicitly and spontaneously draw attention to the co-
occurring objects during visual search (Wu et al. 2013; Yu &
Zhao 2015; Zhao & Luo 2014; Zhao et al. 2013), interferes with
global processing of the visual array (Hall et al. 2015; Zhao et al.
2011), and increases the capacity of visual working memory
(Brady et al. 2009; see also Brady et al. 2011). These findings
support the idea that individual objects can be grouped into one
“item” based on prior knowledge of co-occurrences, and such rep-
resentations determine the allocation of attention, group objects
into chunks, and facilitate search performance.

Besides the benefits of prior knowledge on visual search outcomes,
there are also costs. When asked to search for one item in a category
(e.g., the letter “A”) and a foil item from the category appeared (e.g.,
the letter “R”), participants exhibited attentional capture to the foil at
both neural and behavioral levels (Nako et al. 2014a).Wuet al. (2017)
suggests that the “foil effect” is predicted by level of prior experience
(e.g., distinguishing healthy and unhealthy foods based on dieting
experience). Taken together, these recent studies show how the
application of categorically based attentional templates (i.e., prior
knowledge) can help overcome efficiency limitations in visual
search by expanding the scope of target search, yet at the cost of
false alarms to non-targets that fall within the search category.

In sum, we agree that investigating individual objects only may
not provide a deeper understanding of visual search, but the
“item” is still very useful. A better understanding of the bidirec-
tional interactions of attention and learning allows us to build eco-
logically valid models reflecting cascading effects during visual
search to advance this research area. Moreover, understanding
how prior knowledge affects visual search and related attentional
abilities has important implications for attention training. Given
the growing literature showing the impact of knowledge on atten-
tion, increasing attentional abilities may involve training knowl-
edge, rather than training attention per se.
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On the brink: The demise of the item in visual
search moves closer
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Abstract:We proposed to abandon the item as conceptual unit in
visual search and adopt a fixation-based framework instead. We
treat various themes raised by our commentators, including the
nature of the Functional Visual Field and existing similar ideas,
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alongside the importance of items, covert attention, and top-
down/contextual influences. We reflect on the current state of,
and future directions for, visual search.

R1. Introduction

We are grateful to all commentators for their excellent con-
tributions. As befits a good scientific discussion, some
argued that we are fundamentally wrong or went too far,
while others argued that we are on the right track but did
not go far enough. Again others brought to the forefront
relevant aspects that we were not aware of, or had not
thought of within the current context. In all cases, the com-
mentators’ views either forced or enabled us to improve our
arguments and widen our perspective.
In the target article we made a number of claims, namely

that (1) the study of visual search has been governed by the
assumption that search proceeds on the basis of individual
items; (2) this has prompted a lopsided empirical focus on
easy search tasks that have relatively shallow slopes for their
RT × set size functions; and (3) this, as has been noted by
others, has resulted in ignoring the eye as a major compo-
nent of search. We argued that the emphasis on item-based
processing has led to central, cognitive explanations of
visual search (involving bottlenecks in feature binding and
template matching). Yet the more likely determinant of
visual search performance may be the sensory limitations
associated with peripheral vision. Summarized in what we
referred to as the Functional Visual Field (FVF), these lim-
itations involve reduced acuity, increased crowding, and
overall decreased attention to, and awareness of, peripheral
stimuli. Together, they severely reduce the value of “item”
as a concept in search. We argued that the field best aban-
dons the item as the major unit of processing, and instead
adopts the information patterns available within eye fixa-
tions as the major determinant of RTs, search slopes and
RT distributions. A simple simulation showed the viability
of this approach.
We have organized our response according to a number

of common themes emerging from the commentaries. The
first theme, treated in section R2, revolves around
the question of whether we have anything new to offer.
The second theme (section R3) involves the repeated
objection that items, or objects, are important in visual
search. The third theme (section R4) concerns the role
of covert attention as a selection mechanism that is
independent of eye movement. The fourth theme
(section R5) comprises various issues related to top-
down and contextual influences on search, as these
appear to be omitted from the concept of the FVF.
The fifth theme, further expanded on in section R6, is
how to best define the FVF. In section R7 we focus
on a number of technical issues related to our simula-
tion. Finally, we end with a reflection on where we
are after incorporating the commentaries, and discuss
future directions (section R8).

R2. Does this approach offer anything new?

Several commentators remark that our framework is not
new. For example, Kristjánsson, Chetverikov, & Brink-
huis (Kristjánsson et al.) state that concerns about tradi-
tional approaches are part and parcel of parallel models of
visual search, and Itti points out that the use of fixations as

the conceptual unit is central to most computational theo-
ries and models of attention because they use prediction of
human fixation locations as the main test for their efficacy.
Müller, Liesefeld, Moran, & Usher (Müller et al.) note
that SERR (Humphreys &Müller 1993) anticipated several
of the ideas we advocate, and Rosenholtz sees clear paral-
lels with recent work in her own lab (Rosenholtz et al.
2012a; Zhang et al. 2015). Kieras & Hornof argue that
EPIC (Meyer & Kieras 1997) contains visual modules
that already incorporate parts of the FVF concept. The
FVF is also similar to what has been referred to as the
“area of control” in the work of Prinz (Prinz 1977, which
in turn is similar to the perceptual span in reading,
McConkie & Rayner 1975). Cave suggests that Treisman
and Gormican (1988) might have had a concept similar to
the FVF in mind when they referred to the role of the res-
olution of the attentional scan in making local feature infor-
mation available.
As we tried to make clear in our target article, we agree

that many if not all components of our framework have
been proposed before. A number of authors deserve a
prominent position here, as they made earlier proposals
about the combination of components.1 First of all, there
is Engel (1977), who showed that the size of the FVF (as
measured through target discrimination accuracy at
various eccentricities) predicts spontaneous eye move-
ments during visual search. Separate manual RT-related
measures of search were not reported, though. Kraiss and
Knäeuper (1982) were probably the first to propose a
model in which FVF size predicts number of fixations as
well as manual RTs. Geisler and Chou (1995) also related
peripheral discrimination accuracy for targets at a known
location (referred to as the “accuracy window”) to overall
manual search RTs for the same targets at unknown loca-
tions. Although Geisler and Chou (1995) did not measure
eye movements, they nevertheless demonstrated that a
simple model assuming a variably sized fixation region
(operating within the limits set by the accuracy window)
accurately captured the pattern of search RTs for one of
their participants. Our framework shares a number of prop-
erties with the Geisler and Chou model, including the idea
that fixation duration is best assumed to be relatively cons-
tant, at around 250 ms. Geisler and Chou (1995) did not
assess RT slopes or RT distributions, but here we have
demonstrated that an FVF-type approach captures these
across the full range of search difficulties.
Zelinsky and Sheinberg (1995) measured eye move-

ments during search and demonstrated that manual RTs
on individual trials can be accurately predicted from the
number of fixations that people make on those trials, for
both easy and moderately difficult searches (see Williams
et al. 1997 for similar data). Moreover, Zelinsky and Shein-
berg (1995) proposed that it is mainly the number of items
that can be processed within a fixation which determines
search efficiency – an idea to which our current implemen-
tation of the FVF directly corresponds. Finally, Findlay and
Gilchrist (2003), in their book on active vision, also explic-
itly stated that by taking the limitations of peripheral vision
into account we could do away with central processes of
covert attention as the major delimiter in search – a view
that is very reminiscent of the idea that individual items
are not the unit of processing. Instead, the major delimiter
is how many items can be processed in parallel within a fix-
ation. Thus, Findlay and Gilchrist (2003; see also Eckstein
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2011) arguably provide the most comprehensive general
framework for the relationship between visual search per-
formance and eye movements. However, they did not
offer a formal model or simulation to demonstrate its
viability.

The above shows that the concept of the FVF in relation
to eye movements and visual search performance has sur-
faced at least once every decade. However, as we also
alluded to in our target article, whereas the FVF has
gained a clear foothold in the eye movement strand of
the visual search literature, it has failed to do so in the
more classic, and therefore perhaps more mainstream,
strand of the literature focused on RTs and their slopes
(including our own work). Our central aim was to show
that this appears to be caused by the latter type of literature
being heavily grounded in item-based thinking and the
emphasis on covert, cognitive limitations that comes with
it. This results in a fundamental clash of two classes of
theory, requiring a principled choice. This choice, in our
view, falls overwhelmingly in favour of the fixation-based
approach. We hope our paper will aid in reconnecting all
of the dots, as we believe FVF-based models have not
made the impact on the field of visual search that they
deserve. Furthermore, we extend the explanatory power
of such models by showing that they explain search effi-
ciency across the full range of search types, from easy par-
allel to extremely difficult serial, while also accounting for
RT distributions and, to a great extent, errors. We believe
that our effort opens up new research avenues, something
that we will return to in section R8.

R3. But items are important, even essential!

Several authors indicate that we too easily abandon the
item as the unit of selection. The argument comes in differ-
ent varieties.

R3.1. Your data can be accommodated by item-based
models

Müller et al. note that much of what we know about guid-
ance in visual search stems from item-based experiments
and that including any form of guidance for eye movements
into our framework would bring it closer into line with tra-
ditional item-based models such as Guided Search. Indeed,
Moran, Liesefeld, Usher, & Müller (Moran et al.),
from the same lab, show that their item-based Competitive
Guided Search model (CGS) can simulate our data, with
even better fits for reaction times and errors than our
own simulation. Not only does CGS show the inversion of
the standard deviations from medium to hard search that
we highlighted, but also its target-absent slopes for difficult
search are much closer to the observed data of Young and
Hulleman (2013). In addition, Moran et al. argue that our
framework does not cope well with data of Liesefeld
et al. (2016) who reported on a type of search where
target-present search slopes are flat, but target-absent
search slopes are not, and where there are large effects
(>100 ms) on the intercept. Parameter adjustment in
CGS allows the data to be simulated correctly. Accordingly,
Moran et al. feel that it is premature to prefer a fixation-
based approach over an item-based approach.

We disagree with this position for several reasons. First,
we note that Moran et al. offer no accompanying graphs
for fixations. We suspect this is because an item-based
approach such as CGS does not allow for a principled
way of including eye movements, because the rate at
which items are identified in the model (θ/δ) has no funda-
mental relation to fixation duration. Admittedly, equating
identification rate with fixation duration establishes a con-
nection and even yields a good fit for medium search (see
the final entry of Table 1 in Moran et al.). The good fit,
however, comes at a price: the value of the guidance
parameter nearly doubles, the quit-weight parameter
increases almost a hundredfold and the residual time
parameter is halved. This brings us to a more fundamental
point: In our view, models are meant to engender under-
standing, rather than merely provide a good fit. If we
compare the entries across Table 1 in Moran et al., not a
single parameter remains constant. Nor are any of the
parameters the same as in the paper first introducing
CGS (cf. Table 2 in Moran et al. 2013; except the parame-
ter for motor errors). What seems to be lacking is a clear
justification of the parameter values used, either from
experimental observations or otherwise. At the moment,
CGS looks like it is too focused on fitting rather than under-
standing visual search data.
Furthermore, it stands to reason that a model with eight

free parameters will outperform a model with only a single
free parameter. But what our framework loses in lack of fit,
it more than makes up for in range of description. We think
that it is paramount that models of visual search explain fix-
ations and reaction times simultaneously, rather than trying
to optimise RT-modelling before adding fixations.
In this respect we see the approach of Khani & Ordi-

khani-Seyedlar as more promising. While they propose
an item-based approach based on FIT, they do encompass
fixations, which we think is crucial. In their account the first
fixation produces incomplete feature maps. Rather than
complete conjunctions, these maps only contain “loose”
conjunctions and clusters of feature similarity, with
salient features having a higher chance of entering the
maps. These maps are subsequently used to covertly or
overtly guide attention. Each fixation, then, leads to more
detailed maps. When one or more items reach a threshold
of similarity with a target template, these individual items
are serially selected to establish whether one of them is
the target. The number of items involved in each fixation
is determined by the perceptual load (Lavie 1995; Lavie
& Tsal 1994).
In a way, the proposal of Khani & Ordikhani-Sevedlar

represents a return to the origins of FIT (Treisman &
Gelade 1980), when the role of eye movements in search
was still acknowledged. Given that it is in its very early
stages, we will have to wait to see whether this proposal
bears fruit, but we would nevertheless like to make two
remarks. First, items actually seem to make their appear-
ance quite late in this proposal. Only when the feature
maps are detailed enough are individual items selected
(cf. Hochstein & Ahissar 2002). Second, it remains to be
seen how this model handles situations in which items
move around. Item motion will impinge on the building
up of the feature maps over several fixations, because the
sources of the features – the items –will have moved posi-
tion in the meantime. Yet, as shown in Hulleman (2009;
2010), search for a T amongst Ls is robust against motion.
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R3.2. The importance of objects

The second type of argument in favour of items is that,
clearly, we perceive discrete objects and that, equally
clearly, there are object-based effects on attention (Cave,
Van der Stigchel & Mathôt, Urale). Likewise, the goal
of many, if not most, searches is to select a particular
object for identification, inspection, clicking, counting, or
picking up (Eimer, Kieras & Hornof, Pasqualotto,
Watson, Wolfe). Furthermore, Watson and Wu & Zhao
make the case that such goals are often represented
through an item-based target template (but see Prinz,
who argues against such templates and sees target detec-
tion as a disruption of integrated distractor processing
across fixations). The importance of objects in visual
search is clearly stated by Eimer: “[a]t a more fundamental
level, it is difficult to see how objects can be replaced as
conceptual units in visual search, given that the visual
world is made up of objects, and finding a particular
target object is the goal of a typical search task.” As
Wolfe expresses it, the goal of search is some thing.
Yes, we wholeheartedly agree: The goal of most searches

is to find a specific object. This includes most real-world
searches, but also many artificial laboratory tasks, such as
the compound search task in which the participant needs
to make an additional decision about the target object.
However, the goal of the process is not the same as the
process itself. As Rosenholtz comments, “just because
we recognize ‘things’ at the output of perception, and
employ high-level reasoning about objects, does not mean
that our visual systems operate upon presegmented
things. This is a common and tempting cognitive error,
which can hamper uncovering the true mechanisms of
vision.” Enns & Watson also cite an interesting remark
by Hochberg in this respect: “unlike objects themselves,
our perception of objects is not everywhere dense” (Hoch-
berg 1982, p. 214). In fact, given the severe limitations of
the periphery, one could argue that real object segmenta-
tion is limited to central vision, with the periphery only
being able to deliver the coarsest candidates, especially in
complex, real-world scenes. It is true, as Van der Stigchel
& Mathôt state, that recent deep-learning networks have
demonstrated successful parsing of complex, real-world
scenes into relevant objects. However, we note as well
that, unlike the brain, such algorithms almost invariably
work with images of high and homogeneous resolution.
There is indeed also clear behavioural evidence for

object-based attention (e.g., Duncan 1984; Egly et al.
1994; Theeuwes et al. 2010; 2013). But although object-
based attention may have a modulating influence on selec-
tion, again this does not mean that objects form the unit of
selection in visual search. It may be telling that none of the
referred-to demonstrations of object-based attention used
visual search tasks. Rather, they typically involved rather
sparse displays of at most two objects. That said, we
agree with Urale that it is interesting to investigate how
object-based attention contributes to shaping the FVF by
grouping elements together – something that is also
echoed by Kristjánsson et al. and by Wu & Zhao, who
argue that objects may be flexibly defined by learning con-
glomerates of features. In fact, a fixation-based approach
may accommodate such grouping mechanisms more natu-
rally than an individual item approach (cf., Duncan &
Humphreys 1989). For example, Töllner & Rangelov

note that increasing the number of distractors in a
present/absent version of a pop-out task does not influence
reaction times (although see Wolfe 1998b). Yet the same
increase in a compound task benefits search. Within a fixa-
tion-based framework this can be explained by the fact that
the compound task, unlike the present/absent task,
requires precise saccadic targeting, which is likely to
benefit more from the improved signal-to-noise ratio
allowed by the grouping of the distractors. It is likewise
true that there is considerable EEG evidence for the selec-
tion of individual items – some of which we will treat in
more detail in section R4. Here we wish to make two com-
ments regarding this evidence.
First, the selection of items is typically linked to the

N2pc component, which is a spatially lateralized evoked
potential. It does not index item selection as such, but
rather the spatially selective processing of information at
a relevant or interesting location. Spatial selectivity is not
the same as item selectivity. Note that this type of experi-
ment often uses sparse displays with two or four clearly seg-
mented items (e.g., Eimer & Grubert 2014; Grubert &
Eimer 2015; Woodman & Luck 1999; 2003). This makes
it tempting to link the N2pc to individual item processing,
but that does not necessarily follow from the evidence so
far. As Rosenholtz suggests, we find item-based process-
ing because we design item-based displays.
Second, the observation that spatially selective process-

ing is stronger or takes longer for compound search tasks
than for present/absent tasks, resulting in more pro-
nounced N2pcs – as pointed out by Töllner & Rangelov –
might simply reflect the fact that compound tasks require
more fine-grained discrimination, not that this discrimina-
tion is item-based. While these types of EEG experiments
are extremely useful in uncovering attentional processes, in
our view they do not provide direct evidence that visual
search is item-based.
We emphasize that we do not claim that visual search is

never object- or item-based (as Van der Stigchel &
Mathôt appear to suggest), nor are we of the opinion
that we should not use artificial displays consisting of
clearly separated items. As we pointed out in the target
article, in displays with separate items where target-distrac-
tor discrimination is very difficult, inspection of each indi-
vidual item may be required (resulting in a corresponding
FVF). Furthermore, in some tasks target-distractor dis-
crimination is easier, yet still an item-based strategy is
required. As Watson suggests, one such task is counting
multiple items rather than finding a single one. In a count-
ing task the identity of the individual item matters, because
it is important to separate those that already have been
counted from those that have not. In other words it is
important not only to discriminate targets from distractors,
but also to discriminate between targets. In our view this
necessitates smaller FVFs to prevent interference from
similar but already counted items. Support for this conten-
tion comes from the last experiment in Hulleman (2010),
where participants had to establish whether there were at
least five Ts in a display that also contained Ls. When
there were either very few or very many Ts in the
display, motion of the items did not influence performance.
When there were four, five, or six Ts, however, more errors
were made when the items were moving. This demon-
strates the interaction between task demands and FVF
size. Only when individual item identity is crucial does
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the FVF become small and does search become item-
based.

R3.3. The importance of feature binding

Because items are defined as bound features, item-based
approaches to visual search are predicated on feature
binding. Wolfe is the most explicit here in arguing “that
we search because we need to attend to an item to success-
fully bind its features, and we generally need to bind fea-
tures to recognize items that are the goal of search.”
Wolfe agrees that binding is not always necessary but also
points out that unbound features do not allow for accurate
localisation of the target. As a case in point, he wonders
how it would be possible to determine the presence of a
red vertical target amongst red horizontal and green verti-
cal distractors without binding the red and the vertical into
a single item by attending to it. Eimer is less explicit but
nevertheless appears to concur with this objection by
noting that “[w]hat remains unclear is whether such
global area-based mechanisms can detect the presence or
absence of targets even in moderately difficult search
tasks where no diagnostic low-level saliency signals are
available and distractors share features with the target.”

In our view this type of argument is based on a couple of
assumptions that do not necessarily hold.

First, consider Eimer’s assumption that there are no
diagnostic low-level saliency signals available in moderately
difficult search where distractors share features with the
target. We assume that for Eimer, as for Wolfe, this
means a conjunction search, for example, for a red vertical
amongst red horizontal and green vertical distractors.
Classic item-based thinking dictates that for these types
of searches the target item does not carry a unique
feature. However, this assumes that the individual features
of the individual items provide the only type of information
available and that indeed there are no other diagnostic
signals possible. This neglects that at several levels a
patch containing a red vertical target among red horizontal
and green vertical distractors is different from the same
patch without a target. Even if the items within a patch
do not have distinctive features, the overall image of the
patch does. For instance, in our colour/orientation conjunc-
tion example, a patch with n distractors will contain x reds, x
horizontals, (n−x) greens and (n−x) verticals. So there is a
match between red and horizontal and between green and
vertical. Replacing one of the distractors with the red ver-
tical target will, depending on the distractor replaced,
yield either x reds, (x−1) horizontals, (n−x) greens and
(n−x+1) verticals or (x+1) reds, x horizontals, (n−x−1)
greens and (n−x) verticals. In both cases, there is now a
mismatch between red and horizontal and between green
and vertical. So without assuming any item-based
binding, it is possible to distinguish between patches with
and without a target purely on the basis of summed
totals. It is indeed necessary to bring information from
colours and orientations together but, as this example
shows, this does not have to happen at the level of a fully
bound individual item. Rosenholtz lists quite a number
of other properties of target and non-target patches that
apply here. The presence of a red vertical changes the
local spacing and alignment between the red bars, resulting
in what resembles red T-like or L-like junctions. It likely
changes the spatial frequencies present in the patch,

because the red vertical target would probably be adjacent
to a green vertical. There is no a priori reason to assume
that these signals are not available for visual search.
Second, feature binding is only needed if one assumes

that, unless attended, features remain represented separately
throughout the visual system. As discussed by Di Lollo
(2012) this assumption was originally based on the work of
Hubel and Wiesel (1962; 1977) whose single cell recordings
indicated that neurons in the primary visual cortex
responded selectively to orientation or colour but not both.
This then implied the need for a mechanism to integrate
these features at a later stage by binding them, because a
neuron representing one type of feature does not “know”
about the neuron representing the other feature. However,
it has long since been established that many neurons, also
in early visual cortex, respond to integrated features (e.g.,
Friedman et al. 2003; Seymour et al. 2009; 2010; Shipp
et al. 2009). Moreover, there is considerable cross-talk
within and between retinotopically organized layers in both
feedforward and feedback pathways. This altogether makes
binding less of a problem than it was (Di Lollo 2012; Hoch-
stein & Ahissar 2002; Lamme & Roelfsema 2000). Because
many of these integrative mechanisms appear to operate
without attention, the role that attention plays in binding
remains unclear. We suspect that attending to items may
be necessary to distinguish their feature conglomerates at a
sufficiently fine resolution, rather than to bind these features
together – especially when it involves overt orienting (but not
exclusively so; He et al. 1996; Hochstein & Ahissar 2002).
In sum, it is questionable (1) whether binding of item

features is really necessary (2) what relative contribution
attention makes, and (3) whether the visual system
cannot use more global features other than those of the
individual items. All in all, we find an insufficient basis for
the claim that binding necessitates item-based selection
in visual search.

R4. What about covert deployments of attention?

Several authors raised the concern that a focus on eye
movements and/or FVFs faces the dilemma of how to
explain search in the absence of saccades (Ohl & Rolfs),
because our framework must assume that there is then
nothing left for covert attention to do (Cave andKristjáns-
son et al.). This is at odds with clear evidence for covert
attention effects that often precede eye movements
(Eimer, Khani & Ordikhani-Seyedlar). Others raise
the more general concern that a focus on eye movements
may result in missing interesting covert attention effects
(Lleras, Cronin, Madison, Wang, & Buetti [Lleras
et al.], Watson, Wolfe). Specifically, Wolfe writes that
his interest in serial covert deployments has been the
reason to design experiments that make eye movements
less critical. Lleras et al. state that our framework
assumes that parallel searches (occurring within a single fix-
ation) are not very interesting because they are all created
equal. They point out that this misses out on subtle but
important variations, due to differences in task sets and dif-
ferences in similarity between the target item and distrac-
tor items, that occur even in parallel search without eye
movements. This means that another source of variation
in visual search stems from the efficiency with which indi-
vidual items are judged in parallel search.
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We would like to reiterate that we present a fixation
based account of visual search, not an eye movement
based account. This is a subtle but important difference.
As we wrote, visual search can clearly occur without eye
movements. Yet even when observers are instructed to
keep their eyes still, at least one fixation is involved. Accord-
ingly, search will be limited by the retinal and cortical con-
straints imposed by that fixation, leading to reduced
discriminability in peripheral vision. This alone means
that not all searches within a fixation are equal: Even
when a target falls within the FVF and the mechanism is
in essence a parallel one, detection rates will not be homo-
geneous, as the signal-to-noise ratio is worse in the periph-
ery (e.g., Geisler & Chou 1995). Furthermore, signal-to-
noise ratios will differ for different stimulus combinations
and set sizes, leading to either subtle (e.g., Buetti et al.
2016) or less subtle set size effects (taken as indicative of
serial search). Specific top-down task sets may further
shape the priority map, boosting some signals over
others, as in Guided Search.
The end result of the interaction between bottom-up and

top-down factors is likely to be a covert selection of a can-
didate region for further evaluation (e.g., on a secondary
detail) or motor response (e.g., an eye movement, see
also Cave’s commentary). This region might be an item,
but that is not necessary. In natural circumstances covert
selection is followed by an eye movement, which enables
a full resolution image of the target. In some tasks this is
even explicitly required (e.g., Buschman & Miller 2009).
In other tasks eye movements are forbidden, but this
does not necessarily stop the underlying selection
process. Furthermore, the process is not perfect, so multi-
ple covert hot spots may occur when a selected region turns
out to be the wrong one. This is especially the case when
non-targets are deliberately designed to closely resemble
targets. For example, Woodman and Luck (2003) mea-
sured EEG when participants saw visual search displays
with two salient target candidates (both defined by colour
against black distractors), while maintaining fixation. They
showed that the target candidate near the fovea was
selected first, followed by selection of the more peripheral
one (as the central one turned out not to be the target after
all). In another experiment (Woodman & Luck 1999) they
showed that observers first (again covertly) selected the
target candidate that carried the most frequent target
colour, followed by the candidate that carried a less likely
colour (see also the commentary of Töllner & Rangelov
for target prevalence effects on the EEG signal). Both find-
ings are perfectly consistent with a non-homogeneous FVF,
where essentially parallel bottom-up and top-down pro-
cesses deliver target candidates, but not necessarily all at
the same time.
One could argue that in these specific EEG cases serial-

ity is strongly imposed by the task, given that it is more effi-
cient to inspect the closest or most prevalent item first. As
recent work by Eimer and colleagues has shown, there is
virtually parallel processing of multiple target candidates
when the task is more balanced (Eimer & Grubert 2014;
Grubert & Eimer 2015). Note that this is essentially no dif-
ferent from signal detection accounts of search that also
assume parallel processing (Eckstein et al. 2000; Palmer
et al. 2000; Verghese 2001). Furthermore, when one
forces participants to keep the eyes still, as is usually the
case in EEG experiments, the relative influence of covert

selection will increase. But this is usually not the case in
the real world, nor in most laboratory search tasks for
that matter.
We do not deny the existence of covert attention, nor

the importance of its investigation. Rather, our point is
that some visual search theories appear to rely too
heavily on covert selection to explain search, in that they
assume that search efficiency is predominantly determined
by fast covert scanning of items in combination with
central, item-based bottlenecks (processing items at a
rate of 20–40 items per second, as Wolfe confirms in
his commentary). The fixation-based view follows
Findlay and Gilchrist’s (2003) stance that covert selection
is more likely to be the end product of a search process
that is primarily determined by limitations in retinal and
cortical receptive fields, at most delivering the candidate
region for the next fixation. As such, it is not an indepen-
dent search process that occurs during fixation, but part of
the active eye movement mechanisms. As Findlay and Gil-
christ (2003) pointed out, there is little to no evidence for
a serial covert scan during fixations. Further evidence
against covert serial scanning comes from the robustness
of search against motion of the items, even for searches
that have been deemed serial (Hulleman 2010; Hulleman
& Olivers 2014; Young & Hulleman 2013). Serial deploy-
ment of covert attention within a fixation would predict a
drop in performance, because it becomes harder to distin-
guish between items that have and have not yet been
inspected.

R5. Where to look next: top-down factors

A number of authors point out that an account solely based
on an FVF is incomplete because it fails to incorporate
important if not crucial mechanisms that determine
where people look next in a visual scene. Here we best
summarize such mechanisms as “top-down” in nature,
and they come in a number of varieties: Enns &
Watson; Lleras et al; Shi, Zang, & Geyer [Shi et al.],
Töllner & Rangelov, and Van der Stigchel & Mathôt
emphasize the importance of the task, whereas
Menneer, Godwin, Liversedge, Hillstrom, Benson,
Reichle, & Donnelly [Menneer et al.] and Itti, as well
as Crabb & Taylor; Crawford, Litchfield, & Donovan
[Crawford et al.]; Laubrock, Engbert, & Cajar [Lau-
brock et al.], and Watson highlight the role of context
and scene gist in making predictions, guiding selection,
and determining scan strategies. Learning, whether explicit
or implicit, or task expertise also play an important role in
shaping search (Kristjánsson et al., Van der Kamp &
Dicks, Wu & Zhao, Crawford et al., Menneer et al.,
Van der Stigchel & Mathôt). Kieras & Hornof argue
that a full model of such task- and memory-dependent
strategies therefore requires an overarching cognitive
architecture like EPIC (Meyer & Kieras 1997) or ACT-R
(Anderson & Lebiere 1998). Müller et al. note that
some form of feature guidance, such as in Guided
Search, is required in many search tasks, and Wolfe sus-
pects that these guiding features will be the same as
those determining the FVF. Finally, Henriksson & Hari
suggest that top-down cues need not be represented at
sensory levels but may be of a high-level semantic and
even social nature.
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Non-visual influences are also accentuated by Van der
Kamp & Dicks, as well as Campion (see also Kieras &
Hornof; Töllner & Rangelov), who underline the influ-
ence of motor requirements on the search process.
Because observers normally move about in their environ-
ments, there is a continuous perception-action cycle. Van
der Kamp & Dicks call for a move away from traditional
search tasks where observers are passively watching com-
puter screens. Campion even calls for a move away from
the information processing view of cognition that such tra-
ditional approaches appear to induce. These views are rem-
iniscent of the Gibsonian ecological approach. They also fit
with the active vision approach of Findlay and Gilchrist
(2003) that precedes our own. On the other hand, in refer-
ring to Julian Hochberg’s legacy, Enns & Watson appear
to endorse the information processing approach, stating
that, “what happens behind the observer’s eyes is more
important than what happens in front of them (the
display items) or even in them (the FVF).”

We welcome all of these important suggestions. We
agree that task, context, and actions play an important
role in driving selection in laboratory studies, and even
more so in real world environments. We also agree that
in real-world circumstances, fixation patterns are generally
not random. We restricted our simulations to standard
abstract laboratory displays –where such influences are
minimized or controlled for – exactly because these have
typically subserved the RT data that item-based theories
have been grounded in. We sought to demonstrate that
these types of data can be more straightforwardly captured
by a model that used fixations rather than display items as
its unit of processing. Given the high level of randomness
of laboratory displays, a simulation that assumes random
fixation selection (with some restrictions) suffices.

Nevertheless, the decision about where to look next is
one of the major research questions arising from a fixa-
tion-based approach. We believe that FVF-based accounts
provide a more natural and fruitful way of thinking about
how this decision comes about than item-based accounts.
First of all, we agree with Wolfe that features that have
shown a high degree of guidance in classic visual search
tasks will result in large FVFs. However, whereas Guided
Search assumes feature status, and thus the capability of
guiding attention, for at most a handful of visual properties
(Wolfe & Horowitz 2004), within an FVF account any
visual information that can be discriminated beyond the
fovea can, by definition, subserve attentional guidance in
visual search. Be it a low-level feature, a semantic category,
or the social signal conveyed by a complex facial expression,
if observers can distinguish it in the periphery, it can
become the next target of fixation. The central point is
that such information need not be item-based. What we
claim is that once the attention-guiding properties are
mapped out, the item as such is no longer necessary for
explaining search mechanisms. Note here too Rosen-
holtz’s remark that the same information available in a
rich set of image statistics (Keshvari & Rosenholtz 2016)
also plausibly underlies scene perception (Ehinger&Rosen-
holtz, in press; Rosenholtz et al. 2012b). This suggests a
common encoding scheme for both extracting the scene
context and supporting search. In this respect, Guided
Search can be regarded as a representative of classic
early selection theories, in which only relatively low-level
properties can be used to filter information (Broadbent

1958; Treisman & Gelade 1980). FVF-based theories, on
the other hand, are representatives of multiple level selec-
tion theories (Allport 1980; Findlay & Gilchrist 2003;
Norman & Shallice 1980; 1986), in which the level of selec-
tion is determined by the task requirements and the level of
information available in the input.
In our view then, the FVF is not simply a re-description of

bottom-up salience. Classically, the FVF for a certain type of
information is measured with a task in which observers
actively look for this information in a known location. The
FVF is thus an amalgamation of the availability of the informa-
tion in the input, and the top-down modulation of that input.
Indeed, it has been shown that the FVF can change size or
shape depending on additional task load or the expected
spatial distribution of the target information (e.g., Engel
1971; Ikeda & Takeuchi 1975; Williams 1982). This might
at least partially aid in natural scene search, where targets
are often restricted to certain spatial areas. Given the well-
documented effectiveness of feature- and object-based atten-
tion, the shapeor size of theFVF is also likely to bemodulated
by increasing the gain on specific feature or category distinc-
tions, but to our knowledge there have been few studies
looking directly into this (e.g., Põder 2007, has shown how
repeating the target feature reduces peripheral crowding,
but did not map out the full FVF). Thus, Enns & Watson’s
assertion that “what happens behind the observer’s eyes is
more important than what happens … in them (the FVF)”
(our italics), is partly tautological: Themechanisms determin-
ing theFVF includewhat happens behind the eyes. That said,
Enns&Watson are correct in suggesting that in settingupour
account, we wished to emphasize the sensory restrictions
in visual processing outside of the fovea, rather than the cen-
tral cognitive restrictions associated with foveal processing.
Of course, the amalgamation of top-down and bottom-

up factors into a single construct makes it vulnerable to
becoming circular and unfalsifiable. We will address this
issue in section R6.

R6. The nature of the FVF

Several authors have questions about the nature of the FVF
or whether it is even possible to come up with an opera-
tional definition. Phillips & Takeda feel that the FVF
lacks independent motivation, a sentiment also expressed
by Kristjánsson et al., Watson, and Little, Eidels,
Houpt, & Yang [Little et al.], who mention the risk of cir-
cularity: Search is difficult because the FVF is small, and
the FVF is small because search is difficult. Furthermore,
according to Itti, positing a single FVF size conflates guid-
ance, selection, and enhancement mechanisms. The rela-
tion between the FVF and guidance is also touched upon
by Wolfe, who thinks that the mechanisms controlling
the size of the FVF will look a lot like those controlling
guidance in Guided Search. Control of the size of the
FVF also comes to the fore in the various comparisons of
the FVF to a spotlight (Laubrock et al.; Itti), a zoom
lens (Cave), an attentional window (Kristjánsson et al.)
and its relation to perceptual load (Khani & Ordikhani-
Seyedlar). Rosenholtz points out that is important to
make clear that the FVF is not a mechanism, where its
size is under active control, but an outcome of several
mechanisms: It describes the informative visual regions
for a particular task.
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R6.1. Circularity

We will first address the issue of circularity in the definition
of the FVF.Whereas Phillips & Takeda argue that it is pos-
sible to provide a mathematical basis for the FVF, we believe
that an approach to visual search based on the FVF allows
the circle to be broken in an empirical manner as well,
because it connects performance in visual search to perfor-
mance in other visual tasks. Several researchers have
already led the way. For instance, Engel (1977) determined
the “conspicuity area” by having observers detect the appear-
ance of a target. He subsequently tested visual search for
that target and related the conspicuity area with the cumula-
tive probability of finding the target. A similar approach was
used by Geisler and Chou (1995): They measured an “accu-
racy window” in a two-alternative forced-choice (2AFC)
task, where one of the intervals contained the target and
the other contained only distractors. They then found a cor-
relation between the size of the accuracy window and reac-
tion times in a visual search task. So far the number of
different types of visual stimuli that have been tested and
correlated with search this way has been limited, but this
is a matter of filling in the gaps.
We do note that the method of Geisler and Chou (1995)

could still be considered circular, because the 2AFC task
used for measuring the FVF is essentially a skeleton
version of the search task, and it would therefore be a sur-
prise if there were no correlation. This criticism holds a
little less for the approach used by Engel (1977), who pre-
sented single targets without distractors in the FVF task.
But here too one could say that detection predicts detec-
tion. Still, we want to argue that this method brings us at
least one step further than the item-based approach.
Some non-psychophysical methods might also offer a

route out of circularity. One such method is the use of
gaze-contingent displays. Young and Hulleman (2013) dem-
onstrated that a very difficult search task is more robust
against the masking of non-fixated items than easier search
tasks. This indicates that the former has a smaller FVF
than the latter. Neurophysiological data, too, may be used
as an independent predictor of search performance. For
example, Song et al. (2015) recently reported how anatomi-
cal characteristics of V1 and V2 cortex predict individual dif-
ferences in both the precision of neural population tuning
and performance on a visual discrimination task at various
eccentricities. It would be exciting to see whether the
same measures also predict visual search performance.
In summary, although we agree that circularity in the

definition of the FVF presents a problem, we do think it
is possible to find a solution that will provide a size
measure of the FVF that is independent of search perfor-
mance. Therefore, although Wolfe rightly observes that
the size of the FVF acts to scale search slopes in the
same way that guidance does in Guided Search, we think
that there is a crucial distinction: Only the FVF account
seeks to systematically anchor search performance in an
independent task.

R6.2. Control over FVF size

The issue of size control goes to the very heart of the nature
of the FVF. We agree with Rosenholtz that the FVF is an
outcome – rather than a mechanism –with its size delim-
ited by the interaction between retinal and cortical

constraints on the one hand, and task demands on the
other. Sometimes the retinal and cortical constraints
might work in opposite directions (for instance in the
Gestalt grouping mentioned by Urale). In any case, the
size of the FVF is not actively controlled, but a particular
task can only be performed when the FVF does not
exceed a certain size. Within the FVF, active modulation
(for instance by attentional processes or central perceptual
load, Khani & Ordikhani-Seyedlar) might be possible,
but this can never be more than modulation. Moreover,
this active modulation is not item-based.
As such, the FVF is fundamentally different from atten-

tional zoom lenses and spotlights. The latter are explicitly
conceived of as operating covertly, independent from the
eye, while the FVF is centred on current fixation. As
LaBerge and Brown (1986, p. 198) put it: “attentional
factors dominate in processing visual targets […] retinal
sensitivity factors have a minor role, if any.” We therefore
do not agree with Cave when he suggests that Treisman
and Gormican’s (1988, p. 17) description of the role of
spatial attention is similar to the FVF. Indeed, Treisman
and Gormican wrote: “Attention selects a filled location
within the master map and thereby temporarily restricts
the activity from each feature map to the features that
are linked to the selected location. The finer the grain of
the scan, the more precise the localization and, as a conse-
quence, the more accurately conjoined the features present
in different maps will be.” But this alludes to the way covert
attention promotes correct feature binding. It ignores the
fact that the change in real spatial resolution from periph-
eral to central vision by overtly fixating an item probably
contributes much more to correct object perception.
FVF size control is also at the core of Itti’s commentary.

He suggests that FVF size is unlikely to be fixed as in our
simulations, and that an FVF that is allowed to rapidly
change size and form becomes a liability because it would
be very difficult to measure in real time. But as pointed
out above, we do not see the FVF as an entity that is
directly under active control of the observer. Rather, it is
the outcome of the interaction between task demands on
the one hand and retinal and cortical limitations on the
other. Task demands might change over the course of a
search, but this will be in a gradual, predictable manner
(and is moreover something that any model of search will
have to deal with.) Any change in FVF size will follow
this change in task demands. Itti also suggests that it may
be necessary to separate the FVF into three: a broader
FVF for guidance of search, a smaller FVF for selection,
and a potentially even smaller FVF for enhancement,
because he thinks that using a single FVF size conflates
the separate mechanisms of attentional guidance, atten-
tional selection, and attentional enhancement. However,
conflation might not necessarily be a drawback. The advan-
tage of using the FVF is that these three presumably sepa-
rate mechanisms of increasingly “homing in” on the target
might actually represent one and the same process operat-
ing on increasingly detailed and target-like information. In
a recent paper, Zelinsky et al. (2013) argued that guidance
and recognition in visual search are two sides of the same
coin: eye movement guidance is in essence recognition
from the corner of the eye. The first signal that may be rec-
ognized is some fuzzy statistical reflection of what might be
a target that, after an eye movement has been made,
becomes recognition of a more detailed version.
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R7. Technical issues

Several authors take issue with some of the more detailed
choices we have made in our simulation.

R7.1. The stopping rule

Moran et al. suggest not only that our simple stopping rule
leads to poor fits for the target-absent trials in difficult
search, but also that replacing it with a more plausible
rule will substantially change search RT distributions and
error rates, possibly to an extent that puts the desirable
properties of our framework at risk. We disagree. In our
view, a more plausible stopping rule will actually improve
the quality of our simulation. Currently, simulations of
target-absent trials are most affected by the poor quality
of our simple stopping rule. Furthermore, the influence
of the stopping rule increases with decreasing FVF size.
In combination, this means that the difficult target-absent
condition is most affected. However, this is also the condi-
tion where the discrepancy between simulation and
observed data is largest. Therefore we expect improvement
with a more plausible stopping rule. Crucially, this should
lead to fewer target-absent trials with extremely long reac-
tion times and reduced variability in the target-absent trials
of difficult search. Consequently one of the major insights
of this paper (reversal of SD from medium to difficult
search) remains unscathed. So, although a more plausible
stopping rule is certainly needed, implementing it is not
expected to invalidate the fundamental strength of our
framework.

Crawford et al. raise an issue related to the use of the
stopping rule. They applied the framework to data col-
lected from radiologists who assessed chest radiographs,
and noted that there may be an incompatibility in how
people reach a target present or absent decision. Crawford
et al. report that in their data, target-absent decisions are
faster than target-present decisions, whereas in our frame-
work (and in about every other model of visual search based
on fundamental research) target-absent trials are typically
slower. Although this could point to basic differences
between the fundamental and applied research domains,
we believe this is a case of incommensurate definitions of
“absent decision.” In our approach a target-absent reaction
time is the result of searching close to an entire display,
failing to find the target and terminating the trial with a
target-absent response. This typically takes longer than
searching the display, finding the target and terminating
the trial with a target-present response. For Crawford
et al. a target absent reaction time appears to be something
else: A radiologist fixates a particular part of the radiograph,
correctly decides that there is no suspicious lesion and
moves on. The target-absent reaction time is taken as the
duration of the fixation of this lesion-free zone. Target-
present reaction times are defined in a similar way. Only
here the radiologist correctly decides that there is a suspi-
cious lesion. So when Crawford et al. refer to target-
absent and target-present RTs, they refer to single fixation
events, while in standard search tasks a decision RT is the
result of the accumulation of several such decisions for
the same image. Their comment highlights that the
results of fundamental and applied research cannot pro-
ductively inform each other without consistent definitions.

R7.2. Fixation durations are not constant

Enns & Watson, Henriksson & Hari, Laubrock et al.,
Little et al., Menneer et al., and Shi et al. all point out
that fixation durations vary, for example, in response to
task demands, and that the constant value used in our sim-
ulation is therefore unrealistic. Ohl & Rolfsmake a similar
point in stating that there is useful information in the ampli-
tude of saccades, including microsaccades. Little et al.
make the valid argument that allowing variability of fixation
durations will lead to increased variability in reaction times,
and that this variability is positively correlated with the
number of fixations. As a result the target-absent condition
of difficult search will see the largest increase in variability,
perhaps even making the target-absent trials more variable
than the target-present trials. We ran some additional sim-
ulations with variable fixation durations. It is indeed possi-
ble to make difficult target-absent trials more variable than
target-present trials, but this takes levels of variability in fix-
ation duration that go far beyond those observed in our own
recorded eye movement data. Variable fixation durations
will thus not change the basic pattern of our simulation.
We also point to Zelinsky and Sheinberg (1995), as well
as Geisler and Chou (1995), who showed that it is sufficient
to assume a relatively constant fixation duration.

R7.3. Attentional dwell time and its relation to fixation
duration

Eimer questions our equating dwell time with fixation
duration. He points out the discrepancy between our fixa-
tion duration (250 ms) and attentional dwell time esti-
mates (300–500 ms). Menneer et al. also suggest that
there might be a dissociation between fixation location
and the location whose information is currently processed
when searching scenes. We would like to reply that
although there seems to be a consensus that dwell time
estimates of 20–40 ms per item in visual search tasks are
too low, there is actually much less consensus on a more
realistic value. The 300–500 ms mentioned by Eimer
seems to be derived from Duncan et al. (1994).
However, note that this is for tasks where two difficult-
to-perceive (because masked) targets need to be reported.
Consolidating targets for report likely involves additional
processing and is quite different from the standard
visual search task where the mere presence or absence
of a single target is to be reported. Furthermore, most
estimates of dwell time come from studies that did not
use a visual search paradigm and presented items sequen-
tially rather than simultaneously. Some of these dwell-time
estimates are in the region of 250 ms (Theeuwes et al.
2004) and even go as low as about 100 ms (Wolfe et al.
2000). All in all, this suggests dwell times may be substan-
tially lower than 500 ms.
We do agree with Menneer et al.’s point that there

might be differences between scene search and more
standard search tasks in terms of the relation between fix-
ation duration and dwell time. This is one of the chal-
lenges facing the development of a unifying framework.
One way to accommodate dwell time variations would
of course be to consider them as contributing factors to
the fixation duration variations mentioned in section
R7.2.
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R8. Conclusions: Where do we stand and where do
we go?

In our view one of the most significant outcomes of this dis-
cussion is that all commentators seem to agree that it is
important to include fixations in theories of visual search.
This would constitute a major change for the item-based,
attentional strand of the visual search literature, which
should have wider implications. Referring to their own
2003 work, Findlay and Gilchrist (2005, p. 259) wrote:
“There has indeed been widening interest more generally
in eye scanning and we have even been prepared to
suggest that a fundamental theoretical shift is in the
process of occurring.” Yet more than 10 years down the
line, a simple look at some of the most popular current text-
books on cognitive psychology, cognitive neuroscience, and
even perception shows that the treatment of visual search
seldom includes eye fixations, let alone assigns them a
central role2 (Braisby & Gellatly 2012; Eysenck & Keane
2015; Goldstein 2014; 2015; Reisberg 2013; Sternberg,
2017; Ward 2015; Wolfe et al. 2015). In fact, most do not
go further than Treisman’s FIT plus perhaps some excur-
sion to Duncan and Humphreys’ AET or Wolfe’s Guided
Search. Not only do our students grow up with these text-
books, but also the books serve as a theoretical frame of ref-
erence for many researchers, including clinicians, who use
search tasks only as a tool, rather than as a topic of study.
Such researchers may not only miss out on a rich empirical
source of information, but also may attribute their findings
to the wrong mechanisms.
That said, it is also clear that the idea of abandoning the

item as the conceptual unit of visual search does not enjoy a
similar consensus. The commentators have offered three
main arguments for keeping the item: (1) item-based
models can accommodate our data; (2) objects are impor-
tant in behaviour; and (3) feature binding is necessary.
However, we do not think that these provide sufficient
support for the suggestion that visual search is essentially
an item-based process. Neither do we think that the
effects of covert attention in visual search make this case.
So although the commentators have sharpened our views,
they have not changed them: We still see a fixation-based
framework as the best way to think about visual search.
In essence, the fixation-based approach returns visual

search from mainly being an attentional problem to
mainly being a perceptual problem. By using fixations
and an FVF based on retinal/cortical limitations (in combi-
nation with task demands) the proposed framework makes
direct connections with processes involved in crowding,
reading, and perception in general. For example, there is
no a priori reason to assume that there are no FVFs for
semantic or categorical information (Wu & Zhao; De
Groot et al. 2016; Lupyan 2008), which after all form an
intrinsic part of the perceptual process.
Apart from making a connection between visual search

and other areas in vision science, we also intended our
paper as an attempt to invite new thinking about current
problems in visual search, whether in fundamental or in
applied research. We feel encouraged that several of the
commentators have already made a start with this. Pasqua-
lotto demonstrates how abandoning the item-based
approach to visual search facilitates thinking about the
common aspects of visual and haptic search. Kristjánsson

et al. argue that the FVF approach makes certain testable
predictions about priming, specifically that if search is fixa-
tion-based, priming ought to be fixation-based too.
Menneer et al. also derived new predictions from our
framework, which prompted them to reanalyse their data
for the prevalence effect in visual search through X-ray
images (where rare targets are more easily missed than fre-
quent targets). Their findings were consistent with our
framework. Crawford et al. note that expert radiologists
examining chest radiographs have scan paths that differ
from those of novices, with fewer fixations and larger sacca-
dic amplitudes. This shows the potential of fixation-based
approaches to incorporate expertise and learning. Van
der Kamp & Dicks point out that successful goalkeepers
also have fixation patterns that differ from those of less suc-
cessful ones, citing Piras and Vickers’ (2011) observation
that experienced goalkeepers seem particularly interested
in the empty space between the non-kicking leg and the
ball. Empty space has no role in item-based theories. An
FVF approach is more flexible in accommodating this
kind of observation, as it does not have to rely on the fea-
tures of individual objects. There are many aspects in the
latter and other real-world searches that differ from stan-
dard laboratory search (see also Crabb & Taylor) and
that are not incorporated in our framework, such as the
effects of ill-defined targets, low target prevalence, and
unknown number of targets. But by adopting a common
framework and common definitions, we believe it will be
easier to establish what these differences actually are and
what factors give rise to them.
Clearly, there is much more work to be done. First, as

also became clear from the commentaries, the FVF
needs to be defined properly, through extensive empirical
measurements using multiple independent and converging
methods, as well as through clever computational modeling
(cf. Itti). Interestingly, in 1995 Geisler and Chou (p. 361)
wrote that “the low-level mechanisms are not understood
well enough at this time to precisely quantify the variations
in search information across different search stimuli.” In
our view, this holds more than two decades later. There
has been no concerted large-scale effort to map out the
FVF for the wide range of stimuli that the visual system
is sensitive to. Or as Kieras & Hornof put it, we still
need to collect the empirical data to more completely
parameterize the detectability of visual properties based
on object eccentricity, size, and density. One reason for
not embarking on this effort may be the vast task that lies
ahead: By definition, there will be a specific FVF for
every type of stimulus contrast. Add to this, the effects of
spatial attention, top-down attentional sets, context, and
experience. Clever down-sampling is therefore required.
A second reason may have been the perceived circularity.
As we have argued, there are methods in place that at
least partially address this.
Little is also known about the dynamics of FVF-based

search. How does the visual system determine the length
and precision of saccades and the duration of fixations?
The FVF is an outcome, not a mechanism, but it appears
that this outcome can be used to make the system adapt,
perhaps based on the initial fixation or on previous experi-
ence with similar displays. The dynamics become even
more complicated when we consider that the FVF
changes during the search itself. This occurs when the
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required information changes, for example, from the
target-defining feature to the to-be-reported features (as
in compound search).

The second area where work clearly needs to be done is
on how the next fixation location is determined. As the
commentators made clear, the roles of task, social, and
scene context; learning and expertise; and action require-
ments are grossly underspecified. To this list we would
like to add mechanisms that enable efficient sampling of
the display, for example by selecting certain clusters of
items, or the space in-between (e.g., Zelinsky et al. 1997;
Pomplun 2007). Furthermore, any of these effects is
likely to be amplified in real world situations, with more
realistic task goals, expectations, and actions. However,
we wish to point out that these problems are not specific
to our account; item-based approaches have to explain
such effects as well. Our message is that the problem of
where to look next is best approached from the standpoint
of the machinery that does the looking, and that the
outcome will also be informative for the cases where one
only considers covert attention. Note that the still-domi-
nant theories of visual search (FIT, AET, Guided Search)
were all developed at a time when eye movement recording
was in its infancy, monitors and computers capable of dis-
playing photorealistic pictures were yet to be introduced,
and thus investigations into the perception of objects was
confined to search tasks using simple, clearly defined, and
static items. Rather than retrofitting the dominant theories
to more complex tasks and scenes, we think that it is better
to use a theoretical framework that starts with what all of
the tasks, simple or complex, lab-based or “real-world,”
have in common: fixations.

NOTES
1. We think that some of these works deserve a more promi-

nent position than we gave them in the target article. We initially
missed out on Zelinsky and Sheinberg’s (1995) book chapter
(which in our minds had somehow merged with the somewhat
similar Zelinsky & Sheinberg 1997 paper) and Geisler and Chou
(1995), as we failed to fully scan the literature for another term for
the functional visual field, namely “visual lobe.”We included refer-
ences to both works after acceptance of the manuscript. While pro-
cessing the commentaries, we found out that we also blatantly
missed Findlay and Gilchrist’s (2003) Active Vision book. We
thought that we had covered Findlay and Gilchrist’s stance in treat-
ing their earlier and later work (Findlay & Gilchrist 1998; 2001;
2005), but their book ismuchmore explicit in linking overt attention,
the FVF, and manual RTs. We apologize for these and other over-
sights, and we would like to pay tribute to these authors here.

2. This raises the question of why the paradigmatic shift pre-
dicted by Findlay and Gilchrist (2003) has not yet happened.
We can only guess, but one factor in the continued popularity
of item-based theories may be the satisfying way in which they
combine intuitive appeal, a clear rationale for search slope differ-
ences and the complex workings of early visual cortex.

As pointed out by several commentators, we perceive the world
in terms of objects. This provides a strong intuitive foundation for
item-based theories. Item-based theories also offer a relatively
straightforward understanding of the fundamental result in
visual search: In most searches RTs increase with display size,
but in some they remain constant. At the same time, item-based
theories allow for the complexity of early visual cortex, specifically
the fact that features appear to be represented separately. They
then elegantly explain how attending to the item allows the fea-
tures to be recombined to form the items we see. Adding eye
movements and their associated limitations to this account of
visual search complicates it substantially.

A further factor might be that the item-based approach has
been supported by strong computational models, demonstrating
its explanatory power for manual response data from a range of
search tasks, including pop-out tasks. Models of eye movements
in visual search have typically been confined to rather difficult
search tasks because they require eye movements. As such, bar
the demonstration by Zelinsky and Sheinberg (1995), there has
been little attempt to model search slopes and other manual
response data.

We hope to have shown that a fixation-based approach to visual
search can also have these two ingredients for success, by demon-
strating how the implementation of a conceptually simple fixation-
based framework can simulate the entire range of search slopes,
from pop-out to extremely serial.
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